Log in

Non-degeneracy of solution for critical Lane–Emden systems with linear perturbation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the following elliptic system

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u = |v|^{p-1}v +\epsilon (\alpha u + \beta _1 v), &{}\quad {\hbox {in}}\; \Omega , \\ -\Delta v = |u|^{q-1}u+\epsilon (\beta _2 u +\alpha v), &{}\quad {\hbox {in}}\;\Omega , \\ u=v=0,&{}\quad {\hbox {on}}\; \partial \Omega , \end{array}\right. } \end{aligned}$$

where \(\Omega \) is a smooth bounded domain in \(\mathbb {R}^{N}\), \(N\ge 3\), \(\epsilon \) is a small parameter, \(\alpha \), \( \beta _1\) and \( \beta _2\) are real numbers, (pq) is a pair of positive numbers lying on the critical hyperbola

$$\begin{aligned} \begin{aligned} \frac{1}{p+1}+\frac{1}{q+1} =\frac{N-2}{N}. \end{aligned} \end{aligned}$$

We first revisited the blowing-up solutions constructed in Kim and Pistoia (J Funct Anal 281(2):58, 2021) and then we proved its non-degeneracy. We believe that the various new ideas and technique computations that we used in this paper would be very useful to deal with other related problems involving critical Halmitonian system and the construction of new solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility statement

All data generated or analysed during this study are included in this article.

References

  1. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  2. Capozzi, A., Fortunato, D., Palmieri, G.: An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(6), 463–470 (1985)

    Article  MathSciNet  Google Scholar 

  3. Clarke, F.H., Ekeland, I.: Hamiltonian trajectories having prescribed minimal period. Commun. Pure Appl. Math. 33(2), 103–116 (1980)

    Article  MathSciNet  Google Scholar 

  4. del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri–Coron’s problem. Calc. Var. Partial Differ. Equ. 16(2), 113–145 (2003)

    Article  MathSciNet  Google Scholar 

  5. Deng, Y., Lin, C., Yan, S.: On the prescribed scalar curvature problem in \(\mathbb{R} ^N\), local uniqueness and periodicity. J. Math. Pures Appl. (9) 104(6), 1013–1044 (2015)

    Article  MathSciNet  Google Scholar 

  6. Frank, R.L., Kim, S., Pistoia, A.: Non-degeneracy for the critical Lane–Emden system. Proc. Am. Math. Soc. 149(1), 265–278 (2021)

    Article  MathSciNet  Google Scholar 

  7. Guo, Y., Liu, T., Nie, J.: Solutions for fractional Schrödinger equation involving critical exponent via local Pohozaev identities. Adv. Nonlinear Stud. 20(1), 185–211 (2020)

    Article  MathSciNet  Google Scholar 

  8. Guo, Y., Nie, J., Niu, M., Tang, Z.: Local uniqueness and periodicity for the prescribed scalar curvature problem of fractional operator in \(\mathbb{R} ^N\). Calc. Var. Partial Differ. Equ. 56(4), 41 (2017)

    Article  Google Scholar 

  9. Guo, Y., Musso, M., Peng, S., Yan, S.: Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications. J. Funct. Anal. 279(6), 29 (2020)

    Article  MathSciNet  Google Scholar 

  10. Guo, Y., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. Lond. Math. Soc. (3) 114(6), 1005–1043 (2017)

    Article  MathSciNet  Google Scholar 

  11. Hulshof, J., Mitidieri, E., Van der Vorst, R.C.A.M.: Strongly indefinite systems with critical Sobolev exponents. Trans. Am. Math. Soc. 350(6), 2349–2365 (1998)

    Article  MathSciNet  Google Scholar 

  12. Hulshof, J., Van der Vorst, R.C.A.M.: Asymptotic behaviour of ground states. Proc. Am. Math. Soc. 124(8), 2423–2431 (1996)

    Article  MathSciNet  Google Scholar 

  13. Kim, S., Pistoia, A.: Multiple blowing-up solutions to critical elliptic systems in bounded domains. J. Funct. Anal. 281(2), 58 (2021)

    Article  MathSciNet  Google Scholar 

  14. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1(1), 145–201 (1985)

    Article  MathSciNet  Google Scholar 

  15. Mitidieri, E.: A Rellich type identity and applications. Commun. Partial Differ. Equ. Commun. 18(1–2), 125–151 (1993)

    Article  MathSciNet  Google Scholar 

  16. Peng, S., Wang, C., Yan, S.: Construction of solutions via local Pohozaev identities. J. Funct. Anal. 274(9), 2606–2633 (2018)

    Article  MathSciNet  Google Scholar 

  17. Pohozaev, S.I.: On the eigenfunctions of the equation \(-\Delta u+\lambda f(u)=0\). Dokl. Akad. Nauk SSSR 165, 36–39 (1965)

    MathSciNet  Google Scholar 

  18. Van der Vorst, R.C.A.M.: Variational identities and applications to differential systems. Arch. Ration. Mech. Anal. 116(4), 375–398 (1992)

    Article  MathSciNet  Google Scholar 

  19. Wang, X.J.: Sharp constant in a Sobolev inequality. Nonlinear Anal. 20(3), 261–268 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their careful reading and valuable comments and suggestions that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolong Peng.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuxia Guo was partially supported by National Key R &D Program (2023YFA1010002) and NNSF of China (No.12271283 and 12031015).

Appendices

Appendix A. Preliminaries results

Let G be the Green’s function of the Laplacian \(-\Delta \) in \(\Omega \) with Dirichlet boundary condition. And H be its regular part, then \(G(x,y)=S(x,y)-H(x,y)\) with \(S(x,y) = \frac{\gamma _{N}}{|x-y|^{N-2}}\).

In addition, we introduce a function \(\tilde{G}=\tilde{G}_{\Omega }:\Omega \times \Omega \rightarrow \mathbb {R}\) satisfying

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _{x}\tilde{G}(x,y)=G^{p}(x,y), &{}\quad {\hbox {for}}\; x\in \Omega , \\ \tilde{G}=0,&{}\quad {\hbox {for}}\; x\in \partial \Omega , \end{array}\right. } \end{aligned}$$

for each \(y\in \Omega \), and its regular part \(\tilde{H} = \tilde{H}_{\Omega }:\Omega \times \Omega \rightarrow \mathbb {R}\) by

$$\begin{aligned} \begin{aligned} \tilde{H}=\frac{\tilde{\gamma }_{N,p}}{|x-y|^{(N-2)p-2}}-\tilde{G}(x,y), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \tilde{\gamma }_{N,p}:=\frac{\gamma _{N}^{p}}{((N-2)p-2)(N-(N-2)p)}>0. \end{aligned} \end{aligned}$$

Lemma A.1

Let \(\widehat{H}:\Omega \times \Omega \rightarrow \mathbb {R}\) be a smooth function such that

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _{x}\widehat{H}(x,y)=0, &{}\quad {\hbox {for}}\; x\in \Omega ,\\ \widehat{H}(x,y)=\frac{1}{|x-y|^{(N-2)p-2}},&{}\quad {\hbox {for}}\; x\in \partial \Omega , \end{array}\right. } \end{aligned}$$

for any \(y\in \Omega \). Then we have

$$\begin{aligned} P U_{1}(x)=U_{1}(x)-a_{N, p} \mu _{1}^{\frac{N p}{q+1}} \widehat{H}\left( x, P_{1}\right) +o\left( \mu ^{\frac{N p}{q+1}}\right) , \end{aligned}$$

and

$$\begin{aligned} P V_{1}(x)=V_{1}(x)-\left( \frac{b_{N, p}}{\gamma _{N}}\right) \mu _{1}^{\frac{N}{q+1}} H\left( x, P_{1}\right) +o\left( \mu ^{\frac{N}{q+1}}\right) , \end{aligned}$$

where \(PU_1, PV_1\) are the same as in (1.6).

Proof

Lemma A.1 is proved in [13] by using comparison principle. We give a different proof. Indeed, we have

$$\begin{aligned} PV_{1}(x)=\int _{\Omega }G(x,y)U_{1}^{q}dy,\quad V_{1}(x)=\int _{\mathbb R^{N}}S(x,y)U_{1}^{q}dy. \end{aligned}$$

Thus

$$\begin{aligned} PV_{1}(x)-V_{1}(x)&=-\int _{\Omega ^{c}}S(x,y)U_{1}^{q}dy-\int _{\Omega }H(x,y)U_{1}^{q}dy:=\mathcal {A}_{1}+ \mathcal {A}_{2}. \end{aligned}$$

Since \(dist(P_{1},\Omega )>\delta _{2}>0,\) we have

$$\begin{aligned} | \mathcal {A}_{1} |&\le C\int _{\Omega ^{c}}\frac{1}{|x-y|^{N-2}}\frac{\mu _{1}^{\frac{Npq}{q+1}}}{(1 + |y-P_{1}|)^{\frac{N(p+1)q}{q+1}} } \le C\mu _{1}^{\frac{Npq}{q+1}}. \end{aligned}$$

And

$$\begin{aligned} \mathcal {A}_{2} = \int _{\tilde{\Omega }} H(x, \mu _{1}y+P_{1} )U_{1,0}^{q}(y)dy\mu _{1}^{\frac{N}{q+1}}, \end{aligned}$$

where \( \tilde{\Omega } = \mu _{1}^{-1}( \Omega -P_{1} )\). Since \( H(x, \mu _{1}y+P_{1} )U_{1,0}^{q}(y) \le CU_{1,0}^{q}(y) \), by using the dominated convergence theorem, we have

$$\begin{aligned} \int _{\tilde{\Omega }} H(x, \mu _{1}y+P_{1} )U_{1,0}^{q}(y)dy = H(x,P_{1})\int _{\mathbb {R}^{N}}U_{1,0}^{q}(y)dy + o(1). \end{aligned}$$

So,

$$\begin{aligned} PV_{1}(x)-V_{1}(x) = \mu _{1}^{\frac{N}{q+1}}H(x,P_{1})\int _{\mathbb {R}^{N}}U_{1,0}^{q}(y)dy +o\left( \mu _{1}^{\frac{N}{q+1}}\right) . \end{aligned}$$

Moreover, \(\displaystyle \int _{\mathbb {R}^{N}}U_{1,0}^{q}(y)dy = \frac{b_{N, p}}{\gamma _{N}} \).

\(\square \)

Similar, we can prove

Lemma A.2

\( \frac{\partial P V_{1}}{\partial x_{i}}(x) = \frac{\partial V_{1}}{ \partial x_{i}}(x)-\left( \frac{b_{N, p}}{\gamma _{N}}\right) \mu _{1}^{\frac{N}{q+1}}\frac{\partial H}{ \partial x_{i}}\left( x, P_{1}\right) +o\left( \mu ^{\frac{N}{q+1}}\right) . \)

Lemma A.3

(Theorem 2 in [14]) There exist positive constants \(a_{N,p}\) and \(b_{N,p}\) depending only on N and p such that

$$\begin{aligned} {\left\{ \begin{array}{ll} \lim _{r\rightarrow \infty }r^{(N-2)p-2}U_{1,0}(r)=a_{N,p},\\ \lim _{r\rightarrow \infty }r^{N-2}V_{1,0}(r)=b_{N,p}, \end{array}\right. } \end{aligned}$$

where we wrote \(U_{1,0}(x)= U_{1,0}(|x|)\), \(V_{1,0}(x)= V_{1,0}(|x|)\) and \(r = |x|\) by abusing notations. Furthermore,

$$\begin{aligned} b_{N,p}^{p}=a_{N,p}((N-2)p-2)(N-(N-2)p). \end{aligned}$$

Lemma A.4

(Theorem 1 in [6]])Set

$$\begin{aligned} (\Psi _{0},\Phi _{0}) = \bigg (x\cdot \nabla U_{1,0}+\frac{N U_{1,0}}{q+1},x\cdot \nabla V_{1,0}+\frac{N V_{1,0}}{p+1} \bigg ), \end{aligned}$$

and

$$\begin{aligned} (\Psi _{l},\Phi _{l}) = \left( \frac{\partial U_{1,0}}{\partial x_{l}},\frac{\partial V_{1,0}}{\partial x_{l}} \right) ,\,\,\,\hbox { for }l=1,\ldots ,N. \end{aligned}$$

Then the space of solutions to the linear system

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta \Psi =p V_{1,0}^{p-1}\Phi , &{}\quad {\hbox {in}}\; \mathbb {R}^{N}, \\ -\Delta \Phi =p U_{1,0}^{q-1}\Psi , &{}\quad {\hbox {in}}\; \mathbb {R}^{N}, \\ ( \Psi ,\Phi )\in \dot{W}^{2,\frac{p+1}{p}}( \mathbb {R}^{N} )\times \dot{W}^{2,\frac{q+1}{q}}( \mathbb {R}^{N} ), \end{array}\right. } \end{aligned}$$

is spanned by

$$\begin{aligned} \{ (\Psi _{0},\Phi _{0}),(\Psi _{1},\Phi _{1}) ,\ldots ,(\Psi _{N},\Phi _{N}) \}. \end{aligned}$$

Set

$$\begin{aligned} (\Psi _{1,0},\Phi _{1,0} ) = \left( \mu _{1}^{-\frac{N}{q+1}-1}\Psi _{0}(\mu _{1}^{-1}(x-P_{1})) , \mu _{1}^{-\frac{N}{p+1}-1}\Phi _{0}(\mu _{1}^{-1}(x-P_{1})) \right) , \end{aligned}$$

and

$$\begin{aligned} (\Psi _{1,l},\Phi _{1,l} ) = (\mu _{1}^{-\frac{N}{q+1}-1}\Psi _{l}(\mu _{1}^{-1}(x-P_{1})) , \mu _{1}^{-\frac{N}{p+1}-1}\Phi _{l}(\mu _{1}^{-1}(x-P_{1})) ), \end{aligned}$$

for \(l=1,\ldots ,N \). Let the pair \(( P\Psi _{1,l},P\Phi _{1,l} ) \) be the unique smooth solution of the system

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta P\Psi _{1,l} =p V_{1}^{p-1}P\Phi _{1,l}, &{}\quad {\hbox {in}}\; \Omega , \\ -\Delta P\Phi _{1,l} =p U_{1}^{q-1}P\Psi _{1,l}, &{}\quad {\hbox {in}}\; \Omega , \\ P\Psi _{1,l}=P\Phi _{1,l}=0, &{} \quad {\hbox {in}}\; \partial \Omega , \end{array}\right. } \end{aligned}$$

for \(l=1,\ldots ,N \). Then, we have the following Lemma.

Lemma A.5

(Lemma 2.10. in [13])

$$\begin{aligned} P \Psi _{1, l}(x)= {\left\{ \begin{array}{ll}\Psi _{1, l}(x)+\frac{Np}{q+1}a_{N, p} \mu _{1}^{\frac{N p}{q+1}-1} \widehat{H}\left( x, P_{1}\right) +o\left( \mu ^{\frac{N p}{q+1}-1}\right) , &{} \quad {\text {for}}\; l=0, \\ \Psi _{1,l}(x)+a_{N, p} \mu _{1}^{\frac{N p}{q+1}} \partial _{P_1, l} \widehat{H}\left( x, P_{1}\right) +o\left( \mu ^{\frac{N p}{q+1}}\right) , &{} \quad {\text {for}}\; l=1, \ldots , N,\end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} P \Phi _{1,l}(x)= {\left\{ \begin{array}{ll}\Phi _{1,l}(x)+\left( \frac{N}{q+1}\frac{b_{N, p}}{\gamma _{N}}\right) \mu _{1}^{\frac{N}{q+1}-1} H\left( x, P_{1}\right) +o\left( \mu ^{\frac{N}{q+1}-1}\right) , &{} \quad {\text {for}}\; l=0, \\ \Phi _{1,l}(x)+\left( \frac{b_{N, p}}{\gamma _{N}}\right) \mu _{1}^{\frac{N}{q+1}} \partial _{P_{1}, l} H\left( x, P_{1}\right) +o\left( \mu ^{\frac{N}{q+1}}\right) , &{} \quad {\text {for}}\; l=1, \ldots , N,\end{array}\right. } \end{aligned}$$

for \(x \in \Omega \). Here, \(\partial _{P_1, l} \widehat{H}(x, P_1)\) and \(\partial _{P_1, l} H(x, P_1)\) stand for the l-th components of \(\nabla _{P_1} \widehat{H}(x, P_1)\) and \(\nabla _{P_1} H(x, P_1)\), respectively.

Recall that

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta PU_{d_{1},P_{1}} = PV_{1}^{p}, &{} \quad {\hbox {in}}\; \Omega ,\\ PU_{d_{1},P_{1}}=0,&{} \quad {\hbox {on}}\;\partial \Omega . \end{array}\right. } \end{aligned}$$

Let \(\tilde{G}_{d_{1},P_{1}}:=\Omega \rightarrow \mathbb {R}^{N}\) be the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta \tilde{G}_{d_{1},P_{1}}(x) = d_{1}^{\frac{N}{q+1}}G(x,P_{1}), &{} \quad {\hbox {for}}\; x\in \Omega , \\ \tilde{G}=0,&{} \quad {\hbox {for}}\; x\in \partial \Omega . \end{array}\right. } \end{aligned}$$

and \( \tilde{H}_{d_{1},P_{1}}:=\Omega \rightarrow \mathbb {R}^{N}\) be its regular part given by

$$\begin{aligned} \begin{aligned} \tilde{H}_{d_{1},P_{1}} = d_{1}^{\frac{N}{q+1}}\frac{\tilde{\gamma }_{N,p}}{|x-P_{1}|^{(N-2)p-2}}-\tilde{G}_{d_{1},P_{1}}(x). \end{aligned} \end{aligned}$$

Then we have the following Lemma.

Lemma A.6

(Lemma 2.12. in [13]) For any \(x\in \Omega \), we have

$$\begin{aligned} P U_{{d_1}, {P_1}}(x)=\sum _{i=1}^{k} U_{i}(x)-\mu ^{\frac{N p}{q+1}}\left( \frac{b_{N, p}}{\gamma _{N}}\right) ^{p} \widetilde{H}_{{d_1}, {P_1}}(x)+o\left( \mu ^{\frac{N p}{q+1}}\right) . \end{aligned}$$

Appendix B. Some important estimation

Recall that \(S(x,y) = \frac{\gamma _{N}}{|x-y|^{N-2}}\). And let \(\epsilon _{n} \rightarrow 0\), as \( n\rightarrow +\infty \).

Lemma B.1

\(\frac{\partial PU_{d_{1,k_{n}},P_{1,k_{n}} }}{\partial x_i}(P_{1,k_{n}}) = o( \mu _{1,k_{n}}^{\frac{Np}{q+1}} )\).

Proof

We have

$$\begin{aligned} \begin{aligned} \frac{\partial PU_{d_{1,k_{n}},P_{1,k_{n}} }}{\partial x_i}(x) =\int _{\Omega } \frac{\partial G }{\partial x_i}(x,y)PV_{1,k_{n}}^{p}(y)dy, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \frac{\partial U_{1,k_{n} }}{\partial x_i}(x) =\int _{\mathbb {R}^{N}} \frac{\partial S }{\partial x_i}(x,y)V_{1,k_{n}}^{p}(y)dy. \end{aligned} \end{aligned}$$

So

$$\begin{aligned}&\frac{\partial ( PU_{d_{1,k_{n}},P_{1,k_{n}} } -U_{1,k_{n} } ) }{\partial x_i} \\&\quad = -\int _{\Omega ^{c}} \frac{\partial S }{\partial x_i}(x,y)V_{1,k_{n}}^{p}(y)dy + \int _{\Omega } \frac{\partial S }{\partial x_i}(x,y) \big (pV_{1,k_{n}}^{p} - V_{1,k_{n}}^{p}\big )(y)dy \\&\qquad -\int _{\Omega }\frac{\partial H }{\partial x_i}(x,y)PV_{1,k_{n}}^{p}(y):=\mathcal {I}_1+\mathcal {I}_2+\mathcal {I}_3. \end{aligned}$$

It is easy to check that

$$\begin{aligned} \mathcal {I}_1&= -\mu _{k_{n}}^{\frac{Np}{q+1}}\int _{\Omega ^{c}} \frac{\partial S }{\partial x_i}(x,y)\frac{b_{N,p}^{p}}{\gamma ^{p}_{N}}S^{y}(y,P_{0}) + o\left( \mu _{k_{n}}^{\frac{Np}{q+1}}\right) , \\ \mathcal {I}_2&= \mu _{k_{n}}^{\frac{Np}{q+1}}\int _{\Omega } \frac{\partial S }{\partial x_i}(x,y)\frac{b_{N,p}^{p}}{\gamma _{N}^{p}}(G(y,P_{0})^{p} - S^{p}(y,P_{1}) )+o\left( \mu _{k_{n}}^{\frac{Np}{q+1}}\right) , \\ \mathcal {I}_3&= -\mu _{k_{n}}^{\frac{Np}{q+1}}\int _{\Omega }\frac{\partial H }{\partial x_i}(x,y)G^{p}(y,P_{0})dy+o\left( \mu _{k_{n}}^{\frac{Np}{q+1}}\right) . \end{aligned}$$

Thus

$$\begin{aligned} \frac{\partial PU_{d_{1,k_{n}},P_{1,k_{n}} }}{\partial x_i}(x) = \mu _{k_{n}}^{\frac{Np}{q+1}}\frac{\partial \widetilde{H}}{\partial x_{i}}(x,P_{0})+o\left( \mu _{k_{n}}^{\frac{Np}{q+1}} \right) . \end{aligned}$$

From [13], we get that \(\frac{\partial \widetilde{H}}{\partial x_{i}}(P_{0},P_{0}) =0 \). So \(\frac{\partial PU_{d_{1,k_{n}},P_{1,k_{n}} }}{\partial x_i}(P_{1,k_{n}}) = o( \mu _{k_{n}}^{\frac{Np}{q+1}} ) \). \(\square \)

Lemma B.2

For \(x\in B_{\mu _{1,k_{n}}^{\alpha }}(P_{1,k_{n}})\), we have \(\frac{\partial (PU_{d_{1,k_{n}},P_{1,k_{n}}} - U_{1,k_{n} })}{\partial x_i}(x) = O(\mu _{1,k_{n}}^{\frac{Np}{q+1}})\), as \( n\rightarrow +\infty \), where \(\alpha \) is a small fixed positive constant.

Proof

We have

$$\begin{aligned} \begin{aligned} \frac{\partial PU_{d_{1,k_{n}},P_{1,k_{n}} }}{\partial x_i}(x) =\int _{\Omega } \frac{\partial G }{\partial x_i}(x,y)PV_{1,k_{n}}^{p}(y)dy, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \frac{\partial U_{1,k_{n} }}{\partial x_i}(x) =\int _{\mathbb {R}^{N}} \frac{\partial S }{\partial x_i}(x,y)V_{1,k_{n}}^{p}(y)dy. \end{aligned} \end{aligned}$$

So

$$\begin{aligned} \begin{aligned} \frac{\partial ( U_{1,k_{n} } -PU_{d_{1,k_{n}},P_{1,k_{n}}) }}{\partial x_i}&= \int _{\Omega ^{c}} \frac{\partial S }{\partial x_i}(x,y)V_{1,k_{n}}^{p}(y)dy + \int _{\Omega } \frac{\partial S }{\partial x_i}(x,y) \big (V_{1,k_{n}}^{p} - PV_{1,k_{n}}^{p}\big )(y)dy \\&\quad +\int _{\Omega }\frac{\partial H }{\partial x_i}(x,y)PV_{1,k_{n}}^{p}(y):=\mathcal {I}_1+\mathcal {I}_2+\mathcal {I}_3. \end{aligned} \end{aligned}$$

Direct computations shows that

$$\begin{aligned} \begin{aligned} |\mathcal {I}_1|&\le C\mu _{1,k_{n}}^{\frac{Np}{q+1}}\int _{\Omega ^{c}}\frac{1}{|x-y|^{N-1}}\frac{1}{ (1+ |y-P_{1,k_{n}}| )^{(N-2)p} } \le C\mu _{1,k_{n}}^{\frac{Np}{q+1}}, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} | \mathcal {I}_2 |&\le C\int _{\Omega }\frac{1}{|x-y|^{N-1}}\bigg ( \frac{\mu _{1,k_{n}}^{-\frac{N(p-1)}{p+1}}}{( 1+\mu _{1,k_{n}}^{-1}|y-P_{1,k_{n}}|)^{ (N-2)(p-1) }}\mu _{1,k_{n}}^{\frac{N}{q+1}}+ O\left( \mu _{1,k_{n}}^{\frac{Np}{q+1}} \right) \bigg )dy \le C\mu _{1,k_{n}}^{\frac{Np}{q+1}}. \end{aligned} \end{aligned}$$

Since \(x\in B_{\mu _{1,k_{n}}^{\alpha }}(P_{1,k_{n}})\) and \(dist(P_{1,k_{n}},\Omega )>\delta _2\), we have \( |\frac{\partial H }{\partial x_i}(x,y)|\le C \). Thus

$$\begin{aligned} \begin{aligned} |\mathcal {I}_3|&\le C\int _{\Omega }\frac{\mu _{1,k_{n}}^{-\frac{Np}{p+1}}}{\big ( 1 + \mu _{1,k_{n}}^{-1}| y-P_{1,k_{n}}|\big )^{(N-2)p}}dy \le C\mu _{1,k_{n}}^{\frac{Np}{q+1}}. \end{aligned} \end{aligned}$$

\(\square \)

Lemma B.3

For \(x\in B_{\mu _{1,k_{n}}^{\alpha }}(P_{1,k_{n}})\), we have

$$\begin{aligned} \frac{\partial (P\Phi _{1,k_{n},0} - \Phi _{1,k_{n},0})}{\partial x_i}(x) = O\left( \mu _{1,k_{n}}^{\frac{N}{q+1}-1}\right) ,\quad \frac{\partial (P\Phi _{1,k_{n},j} - \Phi _{1,k_{n},j})}{\partial x_i}(x) = O\left( \mu _{1,k_{n}}^{\frac{N}{q+1}}\right) , \end{aligned}$$

for \(j=1,\ldots ,N\), as \( n\rightarrow +\infty \), where \(\alpha \) is a small fixed positive constant.

Proof

We have

$$\begin{aligned} \begin{aligned}&\frac{\partial (P\Phi _{1,k_{n},0} - \Phi _{1,k_{n},0})}{\partial x_i}(x)\\&\quad = \int _{\Omega ^{c}} \frac{\partial S }{\partial x_i}(x,y)qU_{1,k_{n} }^{q-1}\Psi _{1,n,0}(y)dy +\int _{\Omega }\frac{\partial H }{\partial x_i}(x,y)qU_{1,k_{n} }^{q-1}\Psi _{1,n,0}(y)\\&\quad \le C\mu _{1,k_{n}}^{\frac{Npq}{q+1}-1}\int _{\Omega ^{c}}\frac{1}{|x-y|^{N-1}}\frac{1}{ (1+ |y-P_{1,k_{n}}| )^{\frac{N(p+1)q }{q+1}} }\\&\qquad +C\int _{\Omega }\frac{\mu _{1,k_{n}}^{-\frac{Np}{p+1}-1}}{\big ( 1 + \mu _{1,k_{n}}^{-1}| y-P_{1,k_{n}}|\big )^{\frac{N(p+1)q }{q+1}}}dy\\&\quad \le C\mu _{1,k_{n}}^{\frac{Npq}{q+1}-1}+C\mu _{1,k_{n}}^{\frac{N}{q+1}-1}.\\ \end{aligned} \end{aligned}$$

For \(j=1,\ldots ,N\), we have

$$\begin{aligned} \begin{aligned}&\frac{\partial (P\Phi _{1,k_{n},j} - \Phi _{1,k_{n},j})}{\partial x_i}(x)\\&\quad = \int _{\Omega ^{c}} \frac{\partial S }{\partial x_i}(x,y)pU_{1,k_{n} }^{q-1}\Psi _{1,n,j}(y)dy +\int _{\Omega }\frac{\partial H }{\partial x_i}(x,y)pU_{1,k_{n} }^{q-1}\Psi _{1,n,j}(y)\\&\quad \le C\mu _{1,k_{n}}^{\frac{Npq}{q+1}}\int _{\Omega ^{c}}\frac{1}{|x-y|^{N-1}}\frac{1}{ (1+ |y-P_{1,k_{n}}| )^{\frac{N(p+1)q }{q+1}+1} }\\&\qquad +\int _{B_{\delta }(P_{1,k_{n}})}\frac{\partial H }{\partial x_i}(x,y)pU_{1,k_{n} }^{q-1}\Psi _{1,n,j}(y)+\int _{\Omega -B_{\delta }(P_{1,k_{n}})}\frac{\partial H }{\partial x_i}(x,y)pU_{1,k_{n} }^{q-1}\Psi _{1,n,j}(y)\\&\quad \le C\mu _{1,k_{n}}^{\frac{Npq}{q+1}}+O\left( \mu _{1,k_{n}}^{\frac{Npq}{q+1}} \right) +O\left( \mu _{1,k_{n}}^{\frac{N}{q+1}} \right) , \end{aligned} \end{aligned}$$

where \(\delta \) is a fix small constant. \(\square \)

Lemma B.4

We have

$$\begin{aligned} \mu _{1,k_{n}} \widetilde{P\Psi }_{1,k_{n},0}(x) - \mu _{1,k_{n}} \Psi _{1,k_{n},0}(x) = O\big (\mu _{1,k_{n}}^{\frac{Np}{q+1}}\big ) \end{aligned}$$

and

$$\begin{aligned} \mu _{1,k_{n}} \widetilde{P\Psi }_{1,k_{n},j}(x) - \mu _{1,k_{n}} \Psi _{1,k_{n},j}(x) = O\left( \mu _{1,k_{n}}^{\frac{Np}{q+1} +1}\right) \end{aligned}$$

for \( j\ne 0\).

Proof

for We have

$$\begin{aligned}&\mu _{1,k_{n}} \widetilde{P\Psi }_{1,k_{n},0}(x) - \mu _{1,k_{n}} \Psi _{1,k_{n},0}(x) \\&\quad =\int _{\Omega }G(x,y)p( \mu (PV_{1,k_{n}})^{p-1}P\Phi _{1,k_{n},0} ) - \int _{\mathbb {R}^{N}}s(x,y)p \mu (V_{1,k_{n}})^{p-1}\Phi _{1,k_{n},0} \\&\quad = -\int _{\Omega ^{c}}S(x,y)p (V_{1,k_{n}})^{p-1} \mu \Phi _{1,k_{n},0}-\int _{\Omega }H(x,y)p( (PV_{1,k_{n}})^{p-1} \mu _{1,k_{n}} P\Phi _{1,k_{n},0} )\\&\qquad + \int _{\Omega }S(x,y)p( (PV_{1,k_{n}})^{p-1}P\Phi _{1,k_{n},0} - \mu (V_{1,k_{n}})^{p-1}\Phi _{1,k_{n},0} ) \\&\quad =I_1+I_2+I_3. \end{aligned}$$

It is easy to check that \(|I_{1}|+|I_{2}|+|I_{3}| = O(\mu _{1,k_{n}}^{\frac{Np}{q+1}}) \). Simlarly, we can prove that \(\mu _{1,k_{n}} \widetilde{P\Psi }_{1,k_{n},j}(x) - \mu _{1,k_{n}} \Psi _{1,k_{n},j}(x) = O(\mu _{1,k_{n}}^{\frac{Np}{q+1} +1})\). \(\square \)

Lemma B.5

We have

$$\begin{aligned}&\int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}U^{q}_{1}\frac{\partial \sum _{j=1}^{N} b_{j,n}\mu _{1,k_{n}} (\widetilde{P\Psi }_{1,k_{n},j}-\Psi _{1,k_{n},j}) }{\partial x_{i}}(x)\\&\qquad + \int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}\sum _{j=1}^{N}qU_{1,k_{n}}^{q-1}\Psi _{1,k_{n},j}\frac{\partial (PU_{d_{1,k_{n}},P_{1,k_{n}}} - U_{1,k_{n}}) }{ \partial x_{i}} \\&\quad =-\frac{\mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}}{p+1}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\int _{\mathbb {R}^{N}}U_{0,1}^{q}\sum _{j=1}^{N}b_{j,n}\frac{\partial ^{2}\tau }{\partial x_{i}\partial x_{j}}(P_{0})+o\left( \mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\right) . \end{aligned}$$

Proof

Firstly, we estimate \( \frac{\partial \mu _{1,k_{n}} \widetilde{P\Psi }_{1,k_{n},j}}{\partial x_{i}}(x) - \frac{\partial \mu _{1,k_{n}} \Psi _{1,k_{n},j}}{\partial x_{i}}(x)\).

$$\begin{aligned}&\frac{\partial \mu _{1,k_{n}} \widetilde{P\Psi }_{1,k_{n},j}}{\partial x_{i}}(x) - \frac{\partial \mu _{1,k_{n}} \Psi _{1,k_{n},j}}{\partial x_{i}}(x) \\&\quad =\int _{\Omega }\frac{\partial G}{\partial x_{i}}(x,y)p\big ( \mu _{1,k_{n}}(PV_{1,k_{n}})^{p-1}P\Phi _{1,k_{n},j} \big ) - \int _{\mathbb {R}^{N}}\frac{\partial S}{\partial x_{i}}(x,y)p \mu _{1,k_{n}}(V_{1,k_{n}})^{p-1}\Phi _{1,k_{n},j}\\&\quad =-\int _{\Omega ^{c}}\frac{\partial S}{\partial x_{i}}(x,y)p (V_{1,k_{n}})^{p-1} \mu _{1,k_{n}}\Phi _{1,k_{n},j}-\int _{\Omega }\frac{\partial H}{\partial x_{i}}(x,y)p\big ( (PV_{1,k_{n}})^{p-1} \mu _{1,k_{n}} P\Phi _{1,k_{n},j} \big ) \\&\qquad + \int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y)p\big ( \mu _{1,k_{n}}(PV_{1,k_{n}})^{p-1}P\Phi _{1,k_{n},j} - \mu _{1,k_{n}}(V_{1,k_{n}})^{p-1}\Phi _{1,k_{n},j} \big ) \\&\quad =I_1+I_2+I_3. \end{aligned}$$

It is easy to check that

$$\begin{aligned} I_1 =\mu _{1,k_{n}}^{\frac{Np}{q+1} +1 }\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\int _{\Omega ^{c}}\frac{\partial S}{\partial x_{i}}(x,y)pS^{p-1}(P_{0},y)\frac{\partial S}{\partial x_{j}}(P_{0},y) +o\left( \mu _{1,k_{n}}^{\frac{Np}{q+1} +1 }\right) , \\ I_2= \mu _{1,k_{n}}^{\frac{Np}{q+1} +1 }\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\int _{\Omega }\frac{\partial H}{\partial x_{i}}(x,y)p G(P_{0},y)^{p-1} \frac{\partial G}{\partial x_{j}}(P_{0},y) )+o\left( \mu _{1,k_{n}}^{\frac{Np}{q+1} +1 }\right) . \end{aligned}$$

Now we rewrite \(I_3\)

$$\begin{aligned} I_{3}&=\int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y)\mu _{1,k_{n}} p\big ( (PV_{1,k_{n}})^{p-1} -(V_{1,k_{n}})^{p-1} \big )\Phi _{1,k_{n},j} \\&\quad +\int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y)\mu _{1,k_{n}} p (PV_{1,k_{n}})^{p-1} (P\Phi _{1,k_{n},j} - \Phi _{1,k_{n},j})\\&=I_{31}+I_{32}. \end{aligned}$$

It is easy to check that

$$\begin{aligned} I_{32}=\mu _{1,k_{n}}^{\frac{Np}{q+1} +1 }\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p} \int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y)pG^{p-1}(P_{0},y)\frac{\partial H}{\partial x_{j}}(P_{0},y) + o\left( \mu _{1,k_{n}}^{\frac{Np}{q+1} +1 } \right) . \end{aligned}$$

Now we rewrite \(I_{31}\)

$$\begin{aligned} I_{31}&=\int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y)\mu _{1,k_{n}} p\big ( (PV_{1,k_{n}})^{p-1} -(V_{1,k_{n}})^{p-1}\\&\quad + (p-1)V_{1,k_{n}}^{p-2}\frac{b_{N,p}}{\gamma _{N}}\mu ^{\frac{N}{q+1}}H(P_{0},y) )\Phi _{1,k_{n},j}\\&\quad - \int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y)\mu ^{\frac{N}{q+1}+1}pV_{1,k_{n}}^{p-2}\frac{b_{N,p}}{\gamma _{N}}(p-1)V_{1,k_{n}}^{p-2}\frac{b_{N,p}}{\gamma _{N}}\Phi _{1,k_{n},j}\\&= I_{311}+I_{312}. \end{aligned}$$

It is easy to check that

$$\begin{aligned} I_{311} =&\,-\mu _{1,k_{n}}^{\frac{Np}{q+1}+1}\int _{\Omega }\frac{\partial S}{\partial x_{i}}(P_{0},y)p\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}( G^{p-1}(P_{0},y) -S^{p-1}(P_{0},y)\\&+(p-1)S^{p-2}(P_{0},y)H(P_{0},y) )\frac{\partial S}{\partial x_{j}}(P_{0},y) + o\left( \mu _{1,k_{n}}^{\frac{Np}{q+1}+1} \right) . \end{aligned}$$

Now we estimate \( \frac{\partial PU_{d_{1,k_{n}},P_{1,k_{n}}} }{\partial x_{i}} -\frac{\partial U_{1,k_{n}} }{\partial x_{i}} \),

$$\begin{aligned}&\frac{\partial PU_{d_{1,k_{n}},P_{1,k_{n}}} }{\partial x_{i}} -\frac{\partial U_{1,k_{n}} }{\partial x_{i}}(x) \\&\quad = \int _{\Omega }\frac{\partial G}{\partial x_{i}}(x,y)(PV_{1,k_{n}})^{p}-\int _{\mathbb {R}^{N}}\frac{\partial S}{\partial x_{i}}(x,y)V_{1,k_{n}}^{p} \\&\quad =-\int _{\Omega ^{c}}\frac{\partial S}{\partial x_{i}}(x,y)V_{1,k_{n}}^{p}-\int _{\Omega }\frac{\partial H}{\partial x_{i}}(x,y)(PV_{1,k_{n}})^{p}\\&\qquad +\int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y)((PV_{1,k_{n}})^{p} - V_{1,k_{n}}^{p}) \\&\quad = I_{4}+I_{5}+I_{6}. \end{aligned}$$

It is easy to check that

$$\begin{aligned} I_{4} =&\,-\int _{\Omega ^{c}}\frac{\partial S}{\partial x_{i}}(P_{0},y)V_{1,k_{n}}^{p}-\mu _{1,k_{n}}^{\frac{Np}{q+1}}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\\&\int _{\Omega ^{c}}\sum _{z=1}^{N}\frac{\partial ^2 S}{\partial x_{i}\partial x_{z}}(P_{0},y)(x-P_{0})_{z}S^{p}(P_{0},y) \\&+O\left( \mu _{1,k_{n}}^{\frac{Np}{q+1}}| x-P_{0}|^{2} \right) . \end{aligned}$$

and

$$\begin{aligned} I_{5} =&\,-\int _{\Omega }\frac{\partial H}{\partial x_{i}}(P_{0},y)(PV_{1,k_{n}})^{p}- \mu _{1,k_{n}}^{\frac{Np}{q+1}}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\\&\int _{\Omega }\sum _{z=1}^{N}\frac{\partial ^2 H}{\partial x_{i}\partial x_{z}}(P_{0},y)(x-P_{0})_{z}G^{p}(P_{0},y)\\&+O\left( \mu _{1,k_{n}}^{\frac{Np}{q+1}}| x-P_{0}|^{2} \right) . \end{aligned}$$

Thus

$$\begin{aligned}&\int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{1})}q\mu \sum _{j=1}^{N}U_{1,k_{n}}^{q-1}\Psi _{1,k_{n},j}I_{4}dx \\&\quad =\mu ^{\frac{N(p+1)}{q+1}+1}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\int _{\mathbb {R}^{N}}U_{0,1}^{q} \int _{\Omega ^{c}}\frac{\partial ^2 S}{\partial x_{j}\partial x_{z}}(P_{0},y)S^{p}(P_{0},y)+o\left( \mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1} \right) , \end{aligned}$$
$$\begin{aligned}&\int _{B_{\mu ^{\alpha }}(P_{1})}q\mu \sum _{j=1}^{N}U_{1,k_{n}}^{q-1}\Psi _{1,k_{n},j}I_{5}dx \\&\quad = \mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p} \int _{\mathbb {R}^{N}}U_{0,1}^{q}\int _{\Omega }\frac{\partial ^2 H}{\partial x_{i}\partial x_{j}}(P_{0},y)G^{p}(P_{0},y)+o\left( \mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1} \right) . \end{aligned}$$

Now we estimate \(I_{6}\).

$$\begin{aligned} I_{6}&= \int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y)((PV_{1,k_{n}})^{p} - V_{1,k_{n}}^{p})dy \\&= \int _{\Omega }-\frac{\partial S}{\partial y_{i}}(x,y)\big ((PV_{1,k_{n}})^{p} - V_{1,k_{n}}^{p}\big )dy \\&=-\int _{\partial \Omega }S(x,y)\big ((PV_{1,k_{n}})^{p} - V_{1,k_{n}}^{p}\big )\nu _{i}ds+\int _{\Omega }S(x,y)\frac{\partial ((PV_{1,k_{n}})^{p} - V_{1,k_{n}}^{p})}{\partial y_{i}}dy \\&= -\int _{\Omega }S(x,y)\big ((PV_{1,k_{n}})^{p} - V_{1,k_{n}}^{p}\big )\nu _{i}dy+\int _{\Omega }S(x,y)p\Big ( (PV_{1,k_{n}})^{p-1}\frac{\partial PV_{1,k_{n}}}{\partial y_{i}}\\&\quad -(V_{1,k_{n}})^{p-1}\frac{\partial V_{1,k_{n}}}{\partial y_{i}} \Big )dy = I_{61}+I_{62}. \end{aligned}$$

Direct computation shows that

$$\begin{aligned}&\int _{B_{\mu ^{\alpha }}(P_{0})}q\mu _{1,k_{n}} U_{1,k_{n}}^{q-1}(x)\Psi _{1,k_{n},j}(x) I_{61}dx\\&\quad = -\int _{\partial B_{\mu ^{\alpha }}(P_{0})}\mu _{1,k_{n}} U_{1,k_{n}}^{q}\int _{\partial \Omega }S(x,y)\big ((PV_{1,k_{n}})^{p} - V_{1,k_{n}}^{p}\big )ds_{y}\nu _{j,x}ds_{x} \\&\qquad +\int _{B_{\mu ^{\alpha }}(P_{0})}\mu _{1,k_{n}} U_{1,k_{n}}^{q}\int _{\partial \Omega }\frac{\partial S}{\partial x_{j}}(x,y)\big ((PV_{1,k_{n}})^{p} - V_{1,k_{n}}^{p}\big )\nu _{i}ds_{y}dx \\&\quad = o\left( \mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\right) +\mu _{1,k_{n}}^{\frac{N(p+1)}{(q+1)}+1}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\int _{\mathbb {R}^{N}}U_{0,1}^{q}dx\int _{\partial \Omega }\frac{\partial S}{\partial x_{j}}(P_{0},y)(G^{p}(P_{0},y) \\&\qquad - S^{p}(P_{0},y))\nu _{i}ds_{y}. \end{aligned}$$

We rewrite \(I_{62}\)

$$\begin{aligned} I_{62}&=\int _{\Omega }S(x,y)p\big ( (PV_{1,k_{n}})^{p-1}\frac{\partial PV_{1,k_{n}}}{\partial y_{i}}-(V_{1,k_{n}})^{p-1}\frac{\partial V_{1,k_{n}}}{\partial y_{i}} \big )dy \\&= \int _{\Omega }S(x,y) p\big ((PV_{1,k_{n}})^{p-1} -V_{1,k_{n}}^{p-1} \big )\frac{\partial V_{1,k_{n}}}{\partial y_{i}}dy \\&\quad +\int _{\Omega }S(x,y) p(PV_{1,k_{n}})^{p-1} \left( \frac{\partial PV_{1,k_{n}}}{\partial y_{i}} -\frac{\partial V_{1,k_{n}}}{\partial y_{i}} \right) dy \\&= \int _{\Omega }S(x,y) p\Big ((PV_{1,k_{n}})^{p-1} -V_{1,k_{n}}^{p-1} + (p-1)\frac{b_{N,p}}{\gamma _{N}}V_{1,k_{n}}^{p-2}H(P_{0},y)\mu ^{\frac{N}{q+1}} \Big )\frac{\partial V_{1,k_{n}}}{\partial y_{i}}dy \\&\quad -\int _{\Omega }S(x,y) p(p-1)\frac{b_{N,p}}{\gamma _{N}}V_{1,k_{n}}^{p-2}H(P_{0},y)\mu ^{\frac{N}{q+1}} \frac{\partial V_{1,k_{n}}}{\partial y_{i}}dy \\&\quad +\int _{\Omega }S(x,y) p(PV_{1,k_{n}})^{p-1} \left( \frac{\partial PV_{1,k_{n}}}{\partial y_{i}} -\frac{\partial V_{1,k_{n}}}{\partial y_{i}} \right) dy \\&= I_{621}+I_{622}+I_{623}. \end{aligned}$$

By directly computing, we get that

$$\begin{aligned}&\int _{B_{\mu ^{\alpha }}(P_{0})}q\mu _{1,k_{n}} U_{1,k_{n}}^{q-1}(x)\Psi _{1,k_{n},j}(x) I_{621}dx \\&\quad =\int _{\partial B_{\mu ^{\alpha }}(P_{0})}\mu _{1,k_{n}} U_{1,k_{n}}^{q}(x)I_{621}v_{j}ds_{x}\\&\qquad -\int _{B_{\mu ^{\alpha }}(P_{0})}U_{1,k_{n}}^{q}\int _{\Omega }\mu _{1,k_{n}} \frac{\partial S}{\partial x_{j}}(x,y) p\big ((PV_{1,k_{n}}\big )^{p-1} -V_{1,k_{n}}^{p-1} \\&\qquad + (p-1)\mu ^{\frac{N}{q+1}}\frac{b_{N,p}}{\gamma _{N}}V_{1,k_{n}}^{p-2}H(P_{0},y) )\frac{\partial V_{1,k_{n}}}{\partial y_{i}}dy \\&\quad = -\mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\int _{\mathbb {R}^{N}}U_{0,1}^{q}dx\int _{\Omega }\frac{\partial S}{\partial x_{j}}(P_{0},y) p\big (G^{p-1}(P_{0},y) -S^{p-1}(P_{0},y) \\&\qquad + (p-1)\frac{b_{N,p}}{\gamma _{N}}S^{p-2}(P_{0},y)H(P_{0},y) \big ) \frac{\partial S}{\partial y_{i}}(P_{0},y)dy+o\left( \mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\right) +O\left( \mu _{1,k_{n}}^{Np-\alpha }\right) , \end{aligned}$$
$$\begin{aligned}&\int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}q\mu _{1,k_{n}} U_{1,k_{n}}^{q-1}(x)\Psi _{1,k_{n},j}(x) I_{623}dx\\&\quad =-\int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}\mu _{1,k_{n}} U_{1,k_{n}}^{q}\int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y) p(PV_{1,k_{n}})^{p-1} \left( \frac{\partial PV_{1,k_{n}}}{\partial y_{j}} -\frac{\partial V_{1,k_{n}}}{\partial y_{i}} \right) dy\\&\qquad +O\left( \mu ^{Np-\alpha }\right) \\&\quad =\mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\int _{\mathbb {R}^{N}}U_{0,1}^{q}dx\int _{\Omega }\frac{\partial S}{\partial x_{j}}(P_{0},y)pG(P_{0},y)^{p-1}\frac{\partial H}{\partial y_{i}}(P_{0},y)\\&\qquad +o\left( \mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\right) +O\left( \mu _{1,k_{n}}^{Np-\alpha }\right) , \end{aligned}$$

and

$$\begin{aligned}&\int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}q\mu _{1,k_{n}} U_{1,k_{n}}^{q-1}(x)\psi _{i}(x)I_{622}dx \\&\quad =-\int _{\partial B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}\mu _{1,k_{n}} U_{1,k_{n}}^{q}(x)I_{622}dx+\int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}U_{1,k_{n}}^{q}(x) \\&\qquad \times \int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y) p(p-1)\frac{b_{N,p}}{\gamma _{N}}V_{1,k_{n}}^{p-2}H(P_{0},y)\mu _{1,k_{n}}^{\frac{N}{q+1}+1} \frac{\partial V_{1,k_{n}}}{\partial y_{j}}dy \\&\quad =O\left( \mu _{1,k_{n}}^{Np-\alpha }\right) +\int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}U_{1,k_{n}}^{q}(x)\int _{\Omega }\frac{\partial S}{\partial x_{i}}(x,y) p(p-1)\frac{b_{N,p}}{\gamma _{N}}V_{1,k_{n}}^{p-2}H(P_{0},y)\mu _{1,k_{n}}^{\frac{N}{q+1}+1} \frac{\partial V_{1,k_{n}}}{\partial y_{j}}dy. \end{aligned}$$

So, we get

$$\begin{aligned} \int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}q\mu _{1,k_{n}} U_{1,k_{n}}^{q-1}(x)\psi _{i}(x)I_{622}dx+\int _{B_{\mu ^{\alpha }}(P_{0})}\mu _{1,k_{n}} U_{1,k_{n}}^{q}(x)I_{312}dx=O\left( \mu _{1,k_{n}}^{Np-\alpha }\right) . \end{aligned}$$

Thus, we get

$$\begin{aligned}&\int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}U^{q}_{1}\frac{\partial \sum _{j=1}^{N} b_{j,n}\mu _{1,k_{n}} (\widetilde{P\Psi }_{1,k_{n},j}-\Psi _{1,k_{n},j}) }{\partial x_{i}}(x)\\&\qquad + \int _{B_{\mu _{1,k_{n}}^{\alpha }}(P_{0})}\mu _{1,k_{n}}\sum _{j=1}^{N}qU_{1,k_{n}}^{q-1}\Psi _{1,k_{n},j}\frac{\partial (PU_{d_{1,k_{n}},P_{1,k_{n}}} - U_{1,k_{n}}) }{ \partial x_{i}} \\&\quad =\mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\int _{\mathbb {R}^{N}}U_{0,1}^{q}\sum _{j=1}^{N}b_{j,n}\left( \int _{\Omega ^{c}}\frac{\partial S}{\partial x_{i}}(P_{0},y)pS^{p-1}(P_{0},y)\frac{\partial S}{\partial x_{j}}(P_{0},y)\right. \\&\qquad +\int _{\Omega }\frac{\partial H}{\partial x_{i}}(P_{0},y)p G(P_{0},y)^{p-1} \frac{\partial G}{\partial x_{j}}(P_{0},y) + \int _{\Omega }\frac{\partial S}{\partial x_{i}}(P_{0},y)pG^{p-1}(P_{0},y)\frac{\partial H}{\partial x_{j}}(P_{0},y) \\&\qquad -\int _{\Omega }\frac{\partial S}{\partial x_{i}}(P_{0},y)p\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}( G^{p-1}(P_{0},y)\\&\qquad -S^{p-1}(P_{0},y) +(p-1)S^{p-2}(P_{0},y)H(P_{0},y) )\frac{\partial S}{\partial x_{i}}(P_{0},y) \\&\qquad +\int _{\Omega ^{c}}\frac{\partial ^2 S}{\partial x_{j}\partial x_{i}}(P_{0},y)S^{p}(P_{0},y)+\int _{\Omega }\frac{\partial ^2 H}{\partial x_{i}\partial x_{j}}(P_{0},y)G^{p}(P_{0},y) \\&\qquad +\int _{\partial \Omega }\frac{\partial S}{\partial x_{j}}(P_{0},y)(G^{p}(P_{0},y) - S^{p}(P_{0},y))\nu _{i}ds -\int _{\Omega }\frac{\partial S}{\partial x_{j}}(P_{0},y) p(G^{p-1}(P_{0},y) -S^{p-1}(P_{0},y) \\&\qquad + (p-1)\frac{b_{N,p}}{\gamma _{N}}S^{p-2}(P_{0},y)H(P_{0},y) ) \frac{\partial S}{\partial y_{i}}(P_{0},y)dy \\&\qquad +\int _{\Omega }\frac{\partial S}{\partial x_{j}}(P_{0},y)pG(P_{0},y)^{p-1}\frac{\partial H}{\partial y_{i}}(P_{0},y))+o\left( \mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\right) \\&\quad =-\frac{\mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}}{p+1}\left( \frac{b_{N,p}}{\gamma _{N}}\right) ^{p}\int _{\mathbb {R}^{N}}U_{0,1}^{q}\sum _{j=1}^{N}b_{j,n}\frac{\partial ^{2}\tau }{\partial x_{i}\partial x_{j}}(P_{0})+o\left( \mu _{1,k_{n}}^{\frac{N(p+1)}{q+1}+1}\right) , \end{aligned}$$

the last equals sign follows from Lemma B.6. \(\square \)

Lemma B.6

We have that

$$\begin{aligned}&\frac{\partial ^{2} \tau }{\partial x_{i}\partial x_{j}}(x) \\&\quad = -(p+1)\bigg (\int _{\Omega }\frac{\partial ^{2} H}{\partial x_{i}\partial x_{j}}(x,y) G^{p}(x,y)dy-\int _{\Omega }\frac{\partial H}{\partial x_{i}}(x,y) pG^{p-1}(x,y)\frac{\partial G}{\partial x_{j}}(x,y) dy \\&\qquad - \int _{\Omega }\frac{\partial H}{\partial x_{j}}(x,y) pG^{p-1}(x,y)\frac{\partial S}{\partial x_{j}}(x,y) - \int _{\Omega }\frac{\partial H}{\partial y_{i}}(x,y) pG^{p-1}(x,y)\frac{\partial S}{\partial x_{j}}(x,y)\bigg ). \end{aligned}$$

Proof

Since

$$\begin{aligned} H (x,z)&= \int _{\Omega }G(x,y)G^{p}(z,y)dy -\int _{\mathbb {R}^{N}}S(x,y)S^{p}(z,y)dy \\&=-\int _{\Omega ^{c}}S(x,y)S^{p}(z,y)dy - \int _{\Omega }H(x,y)G^{p}(z,y)dy+\int _{\Omega }S(x,y)(G^{p}(z,y) \\&\quad - S^{p}(z,y))dy, \end{aligned}$$

We have

$$\begin{aligned} \tau (x)&= -\int _{\Omega ^{c}}S^{p+1}(x,y)dy - \int _{\Omega }H(x,y)G^{p}(x,y)dy\\&\quad +\int _{\Omega }S(x,y)(G^{p}(x,y) - S^{p}(x,y))dy. \end{aligned}$$

So

$$\begin{aligned} \frac{\partial \tau }{\partial x_{i}}&=-\int _{\Omega ^{c}}(p+1)S^{p}(x,y)\frac{\partial S}{\partial x_{i}}(x,y)dy - \int _{\Omega }\frac{\partial H}{\partial x_{i}}(x,y)G^{p}(x,y)dy \\&\quad -\int _{\Omega }H(x,y)pG^{p-1}(x,y)\frac{\partial G}{\partial x_{i}}(x,y)dy+\int _{\Omega }\frac{\partial S}{\partial x_{i}}(G^{p}(x,y) - S^{p}(x,y) )dy \\&\quad +\int _{\Omega }\Gamma (x,y)(pG^{p-1}(x,y)\frac{\partial G}{\partial x_{i}}(x,y) - p S^{p-1}(x,y)\frac{\partial S}{\partial x_{i}}(x,y) )dy. \end{aligned}$$

Since

$$\begin{aligned}&\int _{\Omega }\frac{\partial S}{\partial x_{i}}(G^{p}(x,y) - S^{p}(x,y) )dy \\&\quad =\int _{\Omega }S^{p+1}(x,y)\nu _{i}ds + \int _{\Omega }\Gamma (x,y)(pG^{p-1}(x,y)\frac{\partial G}{\partial y_{i}}(x,y) - p S^{p-1}(x,y)\frac{\partial S}{\partial y_{i}}(x,y) )dy \end{aligned}$$

and

$$\begin{aligned} (p+1)\int _{\Omega ^{c}}(p+1)S^{p}(x,y)\frac{\partial S}{\partial x_{i}}(x,y)dy = \int _{\Omega }S^{p+1}(x,y)\nu _{i}ds, \end{aligned}$$

we get that

$$\begin{aligned} \frac{\partial \tau }{\partial x_{i}}&= -\int _{\Omega }\frac{\partial H}{\partial x_{i}}(x,y)G^{p}(x,y)dy- \int _{\Omega }H(x,y)pG^{p-1}(x,y)\frac{\partial G}{\partial x_{i}}(x,y)dy \\&\quad -\int _{\Omega }S(x,y)pG^{p-1}(x,y)\left( \frac{\partial H}{\partial x_{i}}H(x,y) + \frac{\partial H}{\partial y_{i}}(x,y) \right) dy. \end{aligned}$$

Since

$$\begin{aligned}&\int _{\Omega }H(x,y)pG^{p-1}(x,y)\frac{\partial S}{\partial x_{i}}(x,y)dy \\&\quad =-\int _{\Omega }H(x,y)pG^{p-1}(x,y)\frac{\partial G}{\partial y_{i}}(x,y)dy - \int _{\Omega }H(x,y)pG^{p-1}(x,y)\frac{\partial H}{\partial y_{i}}(x,y)dy \\&\quad =\int _{\Omega }\frac{\partial H}{\partial y_{i}}(x,y)G^{p}(x,y) - - \int _{\Omega }H(x,y)pG^{p-1}(x,y)\frac{\partial H}{\partial y_{i}}(x,y)dy, \end{aligned}$$

we get that

$$\begin{aligned} \frac{\partial \tau }{\partial x_{i}} = -(p+1)(\int _{\Omega }\frac{\partial H}{\partial x_{i}}(x,y)G^{p}(x,y)dy+\int _{\Omega }\frac{\partial H}{\partial y_{i}}(x,y)G^{p}(x,y)dy ). \end{aligned}$$

Thus

$$\begin{aligned} \frac{1}{p+1}\frac{\partial ^2 \tau }{\partial x_{j}\partial x_{i}}&= -\int _{\Omega }\frac{\partial ^2 H}{\partial x_{j}\partial x_{i}}(x,y)G^{p}(x,y)dy--\int _{\Omega }\frac{\partial H}{\partial x_{i}}(x,y)pG^{p-1}(x,y)\frac{\partial G}{\partial x_{j}}(x,y)dy\\&\quad -\int _{\Omega }\frac{\partial ^2 H}{\partial x_{j}\partial y_{i}}(x,y)G^{p}(x,y)dy-\int _{\Omega }\frac{\partial H}{\partial y_{i}}(x,y)pG^{p-1}(x,y)\frac{\partial G}{\partial x_{j}}(x,y)dy. \end{aligned}$$

Since

$$\begin{aligned}&-\int _{\Omega }\frac{\partial ^2 H}{\partial x_{j}\partial y_{i}}(x,y)G^{p}(x,y)dy \\&\quad =\int _{\Omega }\frac{\partial H}{\partial x_{j}}(x,y)pG^{p-1}(x,y)\frac{\partial G}{\partial y_{i}}(x,y)dy, \end{aligned}$$

we get that

$$\begin{aligned}&\frac{\partial ^{2} \tau }{\partial x_{i}\partial x_{j}}(x) \\&\quad = -(p+1)\bigg (\int _{\Omega }\frac{\partial ^{2} H}{\partial x_{i}\partial x_{j}}(x,y) G^{p}(x,y)dy-\int _{\Omega }\frac{\partial H}{\partial x_{i}}(x,y) pG^{p-1}(x,y)\frac{\partial G}{\partial x_{j}}(x,y) dy \\&\qquad - \int _{\Omega }\frac{\partial H}{\partial x_{j}}(x,y) pG^{p-1}(x,y)\frac{\partial S}{\partial x_{j}}(x,y) - \int _{\Omega }\frac{\partial H}{\partial y_{i}}(x,y) pG^{p-1}(x,y)\frac{\partial S}{\partial x_{j}}(x,y)\bigg ). \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Hu, Y. & Peng, S. Non-degeneracy of solution for critical Lane–Emden systems with linear perturbation. Calc. Var. 63, 98 (2024). https://doi.org/10.1007/s00526-024-02695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02695-8

Mathematics Subject Classification

Navigation