Log in

Fault distance estimation for transmission lines with dynamic regressor selection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The transmission line is one of the most crucial electric power system components, demanding special attention since they are subject to failures that can cause disruptions in energy supply. In this scenario, the fault location emerges as a fundamental task, providing an approximate position where the failure occurred in the line. This paper presents a method for fault location using a novel dynamic regressor selection (DRS) framework, in which we introduce embedded normalization, incorporating the data scaling process inside the framework. The DRS aims to select the most accurate models from a pool of regressors to predict the fault distance. Moreover, since there is a lack of a public dataset, this paper presents and makes a new fault dataset available to the scientific community with several features extracted from current and voltage signals of representative failure events. In our experiments, we demonstrate the importance of this embedded normalization as well as the significance in the variation of critical hyperparameters of the DRS strategy, such as the distance metric used to define the region of competence and the criterion to select the best regressors from the pool of predictors. This work also presents the definition of the oracle concept in DRS, which represents the ideal predictor selection scheme. The results demonstrate the effectiveness of the proposed method with a mean error of 0.7086 km ± 0.0068 km, representing 0.1712% ± 0.0016% of the transmission line extension (414 km).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used in this paper can be obtained by the following link: https://github.com/leandroensina/FADbF.

Notes

  1. In this paper, we assume the terms scaling and normalization as equivalents.

  2. https://github.com/leandroensina/FADbF.

  3. https://github.com/leandroensina/SM_NCAA_FaultLocation_DRS.

References

  1. Aleem SA, Shahid N, Naqvi IH (2015) Methodologies in power systems fault detection and diagnosis. Energy Syst 6:85–108. https://doi.org/10.1007/s12667-014-0129-1

    Article  Google Scholar 

  2. Alencar GT, Santos RC, Neves A (2022) Euclidean distance-based method for fault detection and classification in transmission lines. J Control Autom Electr Syst 33:1466–1476. https://doi.org/10.1007/s40313-022-00918-x

    Article  Google Scholar 

  3. Amorim LB, Cavalcanti GD, Cruz RM (2023) The choice of scaling technique matters for classification performance. Appl Soft Comput 133:109924. https://doi.org/10.1016/j.asoc.2022.109924

    Article  Google Scholar 

  4. Barandas M, Folgado D, Fernandes L et al (2020) Tsfel: time series feature extraction library. SoftwareX 11:100456. https://doi.org/10.1016/j.softx.2020.100456

    Article  Google Scholar 

  5. Bhatnagar M, Yadav A, Swetapadma A (2023) Random forest regression-based fault location scheme for transmission lines. In: Dash RN, Rathore AK, Khadkikar V et al (eds) Smart technologies for power and green energy. Springer Nature Singapore, Singapore, pp 201–210

  6. Bon NN, Dai LV (2022) Fault identification, classification, and location on transmission lines using combined machine learning methods. Int J Eng Technol Innov 12(2):91–109. https://doi.org/10.46604/ijeti.2022.7571

    Article  Google Scholar 

  7. Boudraa AO, Salzenstein F (2018) Teager-kaiser energy methods for signal and image analysis: a review. Digit Signal Process 78:338–375. https://doi.org/10.1016/j.dsp.2018.03.010

    Article  Google Scholar 

  8. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140. https://doi.org/10.1007/BF00058655

    Article  Google Scholar 

  9. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  10. Breiman L, Friedman J, Stone CJ et al (1984) Classification and regression trees. CRC Press, Boca Raton

    Google Scholar 

  11. Chen K, Huang C, He J (2016) Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High Volt 1(1):25–33. https://doi.org/10.1049/hve.2016.0005

    Article  Google Scholar 

  12. Chen K, Hu J, He J (2018) Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder. IEEE Trans Smart Grid 9(3):1748–1758. https://doi.org/10.1109/TSG.2016.2598881

    Article  Google Scholar 

  13. Cruz RM, Oliveira DV, Cavalcanti GD et al (2019) Fire-des++: Enhanced online pruning of base classifiers for dynamic ensemble selection. Pattern Recognit 85:149–160. https://doi.org/10.1016/j.patcog.2018.07.037

    Article  Google Scholar 

  14. Cruz RMO, Cavalcanti GDC, Ing Ren T (2011) A method for dynamic ensemble selection based on a filter and an adaptive distance to improve the quality of the regions of competence. In: International joint conference on neural networks, pp 1126–1133, https://doi.org/10.1109/IJCNN.2011.6033350

  15. Cruz RMO, Sabourin R, Cavalcanti GDC (2018) Dynamic classifier selection: recent advances and perspectives. Inf Fusion 41:195–216

    Article  Google Scholar 

  16. Cruz RMO, Sabourin R, Cavalcanti GDC (2018) Prototype selection for dynamic classifier and ensemble selection. Neural Comput Appl 29(2):447–457. https://doi.org/10.1007/s00521-016-2458-6

    Article  Google Scholar 

  17. de Oliveira JFL, Silva EG, de Mattos Neto PSG (2022) A hybrid system based on dynamic selection for time series forecasting. IEEE Trans Neural Netw Learn Syst 33(8):3251–3263. https://doi.org/10.1109/TNNLS.2021.3051384

    Article  MathSciNet  Google Scholar 

  18. Deza MM, Deza E (2016) Encyclopedia of distances, 4th edn. Springer, Berlin

    Book  Google Scholar 

  19. Ekici S, Yildirim S, Poyraz M (2008) Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition. Expert Syst Appl 34(4):2937–2944. https://doi.org/10.1016/j.eswa.2007.05.011

    Article  Google Scholar 

  20. Ensina LA, Karvat PEM, Almeida EC, et al (2022a) Fault location in transmission lines based on lstm model. In: X Symposium on knowledge discovery, Mining and Learning, pp 1–8

  21. Ensina LA, Oliveira LES, Almeida EC, et al (2022b) Fault classification in transmission lines with generalization competence. In: IECON 2022 - 48th Annual conference of the IEEE industrial electronics society, pp 1–6

  22. Fan R, Yin T, Huang R, et al (2019) Transmission line fault location using deep learning techniques. In: 2019 North American Power Symposium (NAPS). IEEE, Wichita, KS, USA, pp 1–5

  23. Fei C, Qi G, Li C (2018) Fault location on high voltage transmission line by applying support vector regression with fault signal amplitudes. Electr Power Syst Res 160:173–179. https://doi.org/10.1016/j.epsr.2018.02.005

    Article  Google Scholar 

  24. Ferreira VH, Zanghi R, Fortes MZ et al (2016) A survey on intelligent system application to fault diagnosis in electric power system transmission lines. Electr Power Syst Res 136:135–153. https://doi.org/10.1016/j.epsr.2016.02.002

    Article  Google Scholar 

  25. Ferreira VH, Zanghi R, Fortes MZ et al (2020) Probabilistic transmission line fault diagnosis using autonomous neural models. Electr Power Syst Res 185:1–10. https://doi.org/10.1016/j.epsr.2020.106360

    Article  Google Scholar 

  26. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378. https://doi.org/10.1016/S0167-9473(01)00065-2

    Article  MathSciNet  Google Scholar 

  27. Furse CM, Kafal M, Razzaghi R et al (2021) Fault diagnosis for electrical systems and power networks: a review. IEEE Sensors J 21(2):888–906. https://doi.org/10.1109/JSEN.2020.2987321

    Article  Google Scholar 

  28. Gafoor SA, Rao PVR (2006) Wavelet based fault detection, classification and location in transmission lines. In: 2006 IEEE International power energy conference., pp 114–118

  29. Garcia S, Derrac J, Cano J et al (2012) Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans Pattern Anal Mach Intell 34(3):417–435. https://doi.org/10.1109/TPAMI.2011.142

    Article  Google Scholar 

  30. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63:3–42. https://doi.org/10.1007/s10994-006-6226-1

    Article  Google Scholar 

  31. Godse R, Bhat S (2020) Mathematical morphology-based feature-extraction technique for detection and classification of faults on power transmission line. IEEE Access 8:38459–38471. https://doi.org/10.1109/ACCESS.2020.2975431

    Article  Google Scholar 

  32. Gururajapathy SS, Mokhlis H, Illias HA (2017) Fault location and detection techniques in power distribution systems with distributed generation: a review. Renew Sustain Energy Rev 74:949–958. https://doi.org/10.1016/j.rser.2017.03.021

    Article  Google Scholar 

  33. Haq EU, Jianjun H, Li K et al (2021) Improved performance of detection and classification of 3-phase transmission line faults based on discrete wavelet transform and double-channel extreme learning machine. Electr Eng 103:953–963. https://doi.org/10.1007/s00202-020-01133-0

    Article  Google Scholar 

  34. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844. https://doi.org/10.1109/34.709601

    Article  Google Scholar 

  35. Høidalen HK, Prikler L, Peñaloza F (2019) ATPDraw version 7.0 for Windows—users’ manual

  36. Ishwaran H (2015) The effect of splitting on random forests. Mach Learn 99(1):75–118. https://doi.org/10.1007/s10994-014-5451-2

    Article  MathSciNet  Google Scholar 

  37. Kordos M, Arnaiz-González Á, García-Osorio C (2019) Evolutionary prototype selection for multi-output regression. Neurocomputing 358:309–320. https://doi.org/10.1016/j.neucom.2019.05.055

    Article  Google Scholar 

  38. Krogh A, Vedelsby J (1994) Neural network ensembles, cross validation and active learning. In: Proceedings of the 7th international conference on neural information processing systems. MIT Press, Cambridge, MA, USA, NIPS’94, pp 231-238

  39. Kuncheva L (2002) A theoretical study on six classifier fusion strategies. IEEE Trans Pattern Anal Mach Intell 24(2):281–286. https://doi.org/10.1109/34.982906

    Article  Google Scholar 

  40. Mallaki M, Dashti R (2012) Fault locating in transmission networks using transient voltage data. Energy Procedia 14:173–180. https://doi.org/10.1016/j.egypro.2011.12.914

    Article  Google Scholar 

  41. Mendes-Moreira J, Jorge AM, Soares C, et al (2009) Ensemble learning: A study on different variants of the dynamic selection approach. In: Perner P (ed) machine learning and data mining in pattern recognition. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 191–205

  42. Mendes-Moreira J, Soares C, Jorge AM et al (2012) Ensemble approaches for regression: a survey. ACM Comput Surv 10(1145/2379776):2379786

    Google Scholar 

  43. Mendes-Moreira J, Jorge AM, Freire de Sousa J et al (2015) Improving the accuracy of long-term travel time prediction using heterogeneous ensembles. Neurocomputing 150:428–439. https://doi.org/10.1016/j.neucom.2014.08.072

    Article  Google Scholar 

  44. Mirzaei M, Vahidi B, Hosseinian SH (2018) Fault location on a series-compensated three-terminal transmission line using deep neural networks. IET Sci Meas Technol 12(6):746–754. https://doi.org/10.1049/iet-smt.2018.0036

    Article  Google Scholar 

  45. Mishra DP, Ray P (2018) Fault detection, location and classification of a transmission line. Neural Comput Appl 30(5):1377–1424. https://doi.org/10.1007/s00521-017-3295-y

    Article  Google Scholar 

  46. Moore DG (2019) Pyinform. https://elife-asu.github.io/PyInform/, accessed 18 August 2023

  47. Morais J, Pires Y, Cardoso C et al (2010) A framework for evaluating automatic classification of underlying causes of disturbances and its application to short-circuit faults. IEEE Trans Power Deliv 25(4):2083–2094. https://doi.org/10.1109/TPWRD.2010.2052932

    Article  Google Scholar 

  48. Moura TJ, Cavalcanti GD, Oliveira LS (2021) Mine: a framework for dynamic regressor selection. Inf Sci 543:157–179. https://doi.org/10.1016/j.ins.2020.07.056

    Article  Google Scholar 

  49. Moura TJM, Cavalcanti GDC, Oliveira LS (2019) Evaluating competence measures for dynamic regressor selection. In: 2019 International joint conference on neural networks (IJCNN), pp 1–8

  50. Moura TJM, Cavalcanti GDC, Oliveira LS (2020) On the selection of the competence measure for dynamic regressor selection. In: 2020 IEEE International conference on systems, Man, and Cybernetics (SMC), pp 1630–1637

  51. Mukherjee A, Kundu PK, Das A (2021) Transmission line faults in power system and the different algorithms for identification, classification and localization A brief review of methods. J Inst Eng India Ser B 102(4):855–877. https://doi.org/10.1007/s40031-020-00530-0

    Article  Google Scholar 

  52. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  Google Scholar 

  53. Python (2023) statistics—mathematical statistics functions. https://docs.python.org/3/library/statistics.html, accessed 18 August 2023

  54. Ray P, Panigrahi BK, Senroy N (2013) Hybrid methodology for fault distance estimation in series compensated transmission line. IET Gener Transm Distrib 7(5):431–439. https://doi.org/10.1049/iet-gtd.2012.0243

    Article  Google Scholar 

  55. Raza A, Benrabah A, Alquthami T et al (2020) A review of fault diagnosing methods in power transmission systems. Appl Sci 10(4):1–27. https://doi.org/10.3390/app10041312

    Article  Google Scholar 

  56. Rooney N, Patterson D, Anand S, et al (2004) Dynamic integration of regression models. In: Roli F, Kittler J, Windeatt T (eds) Multiple classifier systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 164–173

  57. Sani US, Malik OA, Lai DTC (2022) Dynamic regressor/ensemble selection for a multi-frequency and multi-environment path loss prediction. Information 13(11):519

    Article  Google Scholar 

  58. Schapire RE, Freund Y, Bartlett P et al (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26(5):1651–1686. https://doi.org/10.1214/aos/1024691352

    Article  MathSciNet  Google Scholar 

  59. Sergio AT, de Lima TP, Ludermir TB (2016) Dynamic selection of forecast combiners. Neurocomputing 218:37–50. https://doi.org/10.1016/j.neucom.2016.08.072

    Article  Google Scholar 

  60. Shakiba FM, Azizi SM, Zhou M et al (2023) Application of machine learning methods in fault detection and classification of power transmission lines: a survey. Artif Intell Rev 56(7):5799–5836. https://doi.org/10.1007/s10462-022-10296-0

    Article  Google Scholar 

  61. Silva EG, De Mattos Neto PSG, Cavalcanti GDC (2021) A dynamic predictor selection method based on recent temporal windows for time series forecasting. IEEE Access 9:108466–108479. https://doi.org/10.1109/ACCESS.2021.3101741

    Article  Google Scholar 

  62. Swaminathan R, Mishra S, Routray A et al (2021) A cnn-lstm-based fault classifier and locator for underground cables. Neural Comput Appl 33(22):15293–15304. https://doi.org/10.1007/s00521-021-06153-w

    Article  Google Scholar 

  63. Swetapadma A, Yadav A (2017) A novel decision tree regression-based fault distance estimation scheme for transmission lines. IEEE Trans Power Deliv 32(1):234–245. https://doi.org/10.1109/TPWRD.2016.2598553

    Article  Google Scholar 

  64. Swetapadma A, Yadav A (2018) A novel single-ended fault location scheme for parallel transmission lines using k-nearest neighbor algorithm. Comput Electr Eng 69:41–53. https://doi.org/10.1016/j.compeleceng.2018.05.024

    Article  Google Scholar 

  65. Ueda N, Nakano R (1996) Generalization error of ensemble estimators. In: Proceedings of international conference on neural networks (ICNN’96), pp 90–95

  66. Valabhoju A, Yadav A, Pazoki M et al (2021) Optimized ensemble of regression tree-based location of evolving faults in dual-circuit line. Neural Comput Appl 33(14):8795–8820. https://doi.org/10.1007/s00521-020-05628-6

    Article  Google Scholar 

  67. Wang B, Mao Z (2020) A dynamic ensemble outlier detection model based on an adaptive k-nearest neighbor rule. Inf Fusion 63:30–40. https://doi.org/10.1016/j.inffus.2020.05.001

    Article  Google Scholar 

  68. Wang X, Zhou P, Peng X et al (2022) Fault location of transmission line based on CNN-LSTM double-ended combined model. Energy Rep 8:781–91. https://doi.org/10.1016/j.egyr.2022.02.275

    Article  Google Scholar 

  69. Wang Y, Cui Q, Weng Y et al (2023) Learning picturized and time-series data for fault location with renewable energy sources. Int J Electr Power Energy Syst 147:108853. https://doi.org/10.1016/j.ijepes.2022.108853

    Article  Google Scholar 

  70. Yadav A, Dash Y (2014) An overview of transmission line protection by artificial neural network: fault detection, fault classification, fault location, and fault direction discrimination. Adv Artif Neural Syst 2014:1–20. https://doi.org/10.1155/2014/230382

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil (CNPq) under Grant 401992/2022-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro A. Ensina.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary information

The Supplementary Material is available at the following link:\url{https://github.com/leandroensina/SM_NCAA_FaultLocation_DRS} (pdf 219KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ensina, L.A., Oliveira, L.E.S.d., Cruz, R.M.O. et al. Fault distance estimation for transmission lines with dynamic regressor selection. Neural Comput & Applic 36, 1741–1759 (2024). https://doi.org/10.1007/s00521-023-09155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09155-y

Keywords

Navigation