Detecting the Linear and Non-linear Causal Links for Disturbances in the Power Grid

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2021)

Abstract

Unscheduled power disturbances cause severe consequences for customers and grid operators. To avoid such events, it is important to identify the causes and localize the sources of the disturbances in the power distribution network. In this work, we focus on a specific power grid in the Arctic region of Northern Norway that experiences an increased frequency of failures of unspecified origin. First, we built a data set by collecting relevant meteorological data and power consumption measurements logged by power-quality meters. Then, we exploited machine-learning techniques to detect disturbances in the power supply and to identify the most significant variables that should be monitored. Specifically, we framed the problem of detecting faults as a supervised classification and used both linear and non-linear classifiers. Linear models achieved the highest classification performances and were able to predict the failures reported with a weighted F1-score of 0.79. The linear models identified the amount of flicker and wind speed of gust as the most significant variables in explaining the power disturbances. Our results could provide valuable information to the distribution system operator for implementing strategies to prevent and mitigate incoming failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.miljodirektoratet.no/publikasjoner/2020/januar-2020/klimakur2030/.

  2. 2.

    https://www.met.no/en/projects/The-weather-model-AROME-Arctic.

References

  1. Abusdal, G.M., Heydt, G.T., Ripegutu, A.: Utilization of advanced metering infrastructure in back-fed ground fault detection. In: 2015 IEEE Power & Energy Society General Meeting, pp. 1–5. IEEE (2015)

    Google Scholar 

  2. Andresen, C.A., Torsæter, B.N., Haugdal, H., Uhlen, K.: Fault detection and prediction in smart grids. In: 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems (AMPS), pp. 1–6. IEEE (2018)

    Google Scholar 

  3. Arva Power Company, T.K.: Arva power company, troms kraft. https://www.tromskraftnett.no/hovedsiden

  4. Balouji, E., Gu, I.Y., Bollen, M.H., Bagheri, A., Nazari, M.: A LSTM-based deep learning method with application to voltage dip classification. In: 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), pp. 1–5 (2018). https://doi.org/10.1109/ICHQP.2018.8378893

  5. Bianchi, F.M., De Santis, E., Rizzi, A., Sadeghian, A.: Short-term electric load forecasting using echo state networks and PCA decomposition. IEEE Access 3, 1931–1943 (2015)

    Article  Google Scholar 

  6. Bianchi, F.M., Maiorino, E., Kampffmeyer, M.C., Rizzi, A., Jenssen, R.: Recurrent Neural Networks for Short-term Load Forecasting: an Overview and Comparative Analysis (2017)

    Google Scholar 

  7. Chen, K., Hu, J., Zhang, Y., Yu, Z., He, J.: Fault location in power distribution systems via deep graph convolutional networks. IEEE J. Sel. Areas Commun. 38(1), 119–131 (2020). https://doi.org/10.1109/JSAC.2019.2951964

    Article  Google Scholar 

  8. Chiaradonna, S., Di Giandomenico, F., Masetti, G.: Analyzing the impact of failures in the electric power distribution grid. In: 2016 Seventh Latin-American Symposium on Dependable Computing (LADC), pp. 99–108. IEEE (2016)

    Google Scholar 

  9. Csanyi, E.: Detailed overview of power system disturbances (causes and impacts). https://electrical-engineering-portal.com/detailed-overview-of-power-system-disturbances-causes-and-impacts

  10. De Caro, F., Carlini, E., Villacci, D.: Flexibility sources for enhancing the resilience of a power grid in presence of severe weather conditions. In: 2019 AEIT International Annual Conference (AEIT), pp. 1–6. IEEE (2019)

    Google Scholar 

  11. Ferrari, R.M.G., Parisini, T., Polycarpou, M.M.: Distributed fault detection and isolation of large-scale discrete-time nonlinear systems: an adaptive approximation approach. IEEE Trans. Autom. Control 57(2), 275–290 (2012). https://doi.org/10.1109/TAC.2011.2164734

    Article  MathSciNet  MATH  Google Scholar 

  12. Foldvik Eikeland, O., Bianchi, F.M., Chiesa, M.: Uncovering contributing factors to interruptions in the power grid. Arxiv preprint (2021)

    Google Scholar 

  13. Gopinath, G.S., Meher, M.: Electricity a basic need for the human beings. In: AIP Conference Proceedings, vol. 1992, p. 040024. AIP Publishing LLC (2018)

    Google Scholar 

  14. Hoffmann, V., Michałowska, K., Andresen, C., Torsæter, B.N.: Incipient fault prediction in power quality monitoring (2019)

    Google Scholar 

  15. Khorasgani, H., Hasanzadeh, A., Farahat, A., Gupta, C.: Fault detection and isolation in industrial networks using graph convolutional neural networks. In: 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 1–7 (2019). https://doi.org/10.1109/ICPHM.2019.8819403

  16. Klinger, C., Owen Landeg, V.M.: Power outages, extreme events and health: a systematic review of the literature from 2011–2012. PLoS Currents, 6 (2014)

    Google Scholar 

  17. Lovdata, N.: Forskrift om leveringskvalitet i kraftsystemet. https://lovdata.no/dokument/SF/forskrift/2004-11-30-1557

  18. Meles, T.H.: Impact of power outages on households in develo** countries: evidence from Ethiopia. Energy Econ. 91, 104882 (2020)

    Article  Google Scholar 

  19. Owerko, D., Gama, F., Ribeiro, A.: Predicting power outages using graph neural networks. In: 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 743–747. IEEE (2018)

    Google Scholar 

  20. Panteli, M., Mancarella, P.: Influence of extreme weather and climate change on the resilience of power systems: impacts and possible mitigation strategies. Electr. Power Syst. Res. 127, 259–270 (2015)

    Article  Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Perera, A., Nik, V.M., Chen, D., Scartezzini, J.L., Hong, T.: Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 5(2), 150–159 (2020)

    Article  Google Scholar 

  23. Rubí, C.: The challenges of upgrading the power grid for a decarbonised electric future. https://informaconnect.com/the-challenges-of-upgrading-the-power-grid-for-a-decarbonised-electric-future/

  24. S. Mark Halpin, A.C.: Power Electronics Handbook, 2nd (edn.), chap. 38 - Power Quality. Academic Press, Department of Electrical and Computer Engineering, Auburn University, Alabama, USA (2007)

    Google Scholar 

  25. Sabouhi, H., Doroudi, A., Fotuhi-Firuzabad, M., Bashiri, M.: Electrical power system resilience assessment: a comprehensive approach. IEEE Syst. J. 14(2), 2643–2652 (2019)

    Article  Google Scholar 

  26. Sapountzoglou, N., Lago, J., De Schutter, B., Raison, B.: A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids. Appl. Energy 276, 115299 (2020)

    Article  Google Scholar 

  27. Shuai, M., Chengzhi, W., Shiwen, Y., Hao, G., Jufang, Y., Hui, H.: Review on economic loss assessment of power outages. Procedia Comput. Sci. 130, 1158–1163 (2018)

    Article  Google Scholar 

  28. Trakas, D.N., Panteli, M., Hatziargyriou, N.D., Mancarella, P.: Spatial risk analysis of power systems resilience during extreme events. Risk Anal. 39(1), 195–211 (2019)

    Article  Google Scholar 

  29. Tully, S.: The human right to access electricity. Electr. J. 19(3), 30–39 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Maria Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eikeland, O.F., Bianchi, F.M., Holmstrand, I.S., Bakkejord, S., Chiesa, M. (2022). Detecting the Linear and Non-linear Causal Links for Disturbances in the Power Grid. In: Sanfilippo, F., Granmo, OC., Yayilgan, S.Y., Bajwa, I.S. (eds) Intelligent Technologies and Applications. INTAP 2021. Communications in Computer and Information Science, vol 1616. Springer, Cham. https://doi.org/10.1007/978-3-031-10525-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10525-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10524-1

  • Online ISBN: 978-3-031-10525-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation