Log in

Prediction of schizophrenia from activity data using hidden Markov model parameters

  • S.I.: Computational-based Biomarkers for Mental and Emotional Health(CBMEH2021)
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of predicting schizophrenia based on a persons measured motor activity over time. A key challenge to achieve this is how to extract features from the activity data that can efficiently separate schizophrenia patients from healthy subjects. To achieve this, we suggest to fit time dependent hidden Markov models with and without integrated covariates and letting the estimated model parameters represent our features. To further evaluate the efficiency of these features, we suggest to use them as features in a classification method (logistic regression) to separate schizophrenia patients from healthy subjects. The results show that the estimated hidden Markov model parameters are well-performing in predicting schizophrenia, and outperform features derived from other methods in the literature in terms of goodness-of-fit and classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availibility Statement

The dataset analysed during the current study is available in the Simula Datasets repository [59]

References

  1. World Health Organization (2004) Promoting mental health: concepts, emerging evidence, practice: summary report. World Health Organization, Geneva

    Google Scholar 

  2. Ropper AH, Marder SR, Cannon TD (2019) N Engl J Med 381:1753

    Google Scholar 

  3. NI (2021) of Mental Health, Schizophrenia, NIH Publication No. 21-MH-8082

  4. Gaebel W, Wölwer W (2010) Gesundheitsberichterstattung des bundes heft 50. Rober Koch Institut, Berlin

    Google Scholar 

  5. AP Association et al (2020) Publication manual of the American Psychological Association, (American Psychological Association, 2019)

  6. Garcia-Ceja E, Riegler M, Nordgreen T, Jakobsen P, Oedegaard KJ, Tørresen J (2018) Mental health monitoring with multimodal sensing and machine learning: a survey. Pervasive Mob Comput 51:1

    Google Scholar 

  7. Jakobsen P, Stautland A, Riegler MA, Cote-Allard U, Sepasdar Z, Nordgreen T, Torresen J, Fasmer OB, Oedegaard KJ (2021) Complexity and variability analyses of motor activity distinguish mood states in bipolar disorder, medRxiv

  8. Harvey AG, Murray G, Chandler RA, Soehner A (2011) Sleep disturbance as transdiagnostic: consideration of neurobiological mechanisms. Clin Psychol Rev 31(2):225

    Google Scholar 

  9. Meyer N, Faulkner SM, McCutcheon RA, Pillinger T, Dijk DJ, MacCabe JH (2020) Sleep and circadian rhythm disturbance in remitted schizophrenia and bipolar disorder: a systematic review and meta-analysis. Schizophr Bull. https://doi.org/10.1093/schbul/sbaa024

    Article  Google Scholar 

  10. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517

    Google Scholar 

  11. Delorme TC, Srivastava LK, Cermakian N (2020) Are circadian disturbances a core pathophysiological component of schizophrenia? J Biol Rhythms 35(4):325

    Google Scholar 

  12. Henson P, Barnett I, Keshavan M, Torous J (2020) Towards clinically actionable digital phenoty** targets in schizophrenia. npj Schizophr 6(1):1

    Google Scholar 

  13. Motohashi Y, Maeda A, Wakamatsu H, Higuchi S, Yuasa T (2000) Circadian rhythm abnormalities of wrist activity of institutionalized dependent elderly persons with dementia. J Gerontol Ser A Biol Sci Med Sci 55(12):M740

    Google Scholar 

  14. Komijani H, Parsaei MR, Khajeh E, Golkar MJ, Zarrabi H (2019) Eeg classification using recurrent adaptive neuro-fuzzy network based on time-series prediction. Neural Comput Appl 31(7):2551

    Google Scholar 

  15. Aydin I, Karakose M, Akin E (2020) A new method for time series classification using multi-dimensional phase space and a statistical control chart. Neural Comput Appl 32(11):7439

    Google Scholar 

  16. Abu Arqub O (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl 28(7):1591

    Google Scholar 

  17. Momani S, Abo-Hammour ZS, Alsmadi OM (2016) Solution of inverse kinematics problem using genetic algorithms. Appl Math Inf Sci 10(1):225

    Google Scholar 

  18. Abo-Hammour Z, Abu Arqub O, Momani S, Shawagfeh N (2014) Optimization solution of Troesch’s and Bratu’s problems of ordinary type using novel continuous genetic algorithm. Discrete Dyn Nat Soc. https://doi.org/10.1155/2014/401696

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu Z, Laber EB, Staicu AM (2020) Hierarchical continuous time hidden Markov model, with application in zero-inflated accelerometer data. In: Zhao Y, Chen DG (eds) Statistical modeling in biomedical research. Springer, Berlin, pp 125–142

    Google Scholar 

  20. Witowski V (2018) Hmmpa-package: analysing accelerometer data using hidden markov models, CRAN R Packages

  21. Huang Q, Cohen D, Komarzynski S, Li XM, Innominato P, Lévi F, Finkenstädt B (2018) Hidden Markov models for monitoring circadian rhythmicity in telemetric activity data. J Royal Soc Interface 15(139):20170885

    Google Scholar 

  22. Carr O, Andreotti F, Saunders KE, Palmius N, Goodwin GM, De Vos M (2020) Monitoring depression in bipolar disorder using circadian measures from smartphone accelerometers, ar**v preprint ar**v:2007.02064

  23. Boeker M, Riegler MA, Hammer HL, Halvorsen P, Fasmer OB, Jakobsen P (2021) In: Proceedings of IEEE international symposium on computer-based medical systems (CBMS) (IEEE, 2021) pp 432–437

  24. Morgenthaler T, Alessi C, Friedman L, Owens J, Kapur V, Boehlecke B, Brown T, Chesson A Jr, Coleman J, Lee-Chiong T et al (2007) Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007. Sleep 30(4):519

    Google Scholar 

  25. Sadeh A (2011) The role and validity of actigraphy in sleep medicine: an update. Sleep Med Rev 15(4):259

    Google Scholar 

  26. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP (2003) The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26(3):342

    Google Scholar 

  27. Tahmasian M, Khazaie H, Golshani S, Avis KT (2013) Clinical application of actigraphy in psychotic disorders: a systematic review. Curr Psychiatry Rep 15(6):359

    Google Scholar 

  28. Afonso P, Figueira ML, Paiva T (2014) Sleep-wake patterns in schizophrenia patients compared to healthy controls. World J Biol Psychiatry 15(7):517

    Google Scholar 

  29. Apiquian R, Fresán A, Muñoz-Delgado J, Kiang M, Ulloa RE, Kapur S (2008) Variations of rest-activity rhythm and sleep-wake in schizophrenic patients versus healthy subjects: an actigraphic comparative study. Biol Rhythm Res 39(1):69

    Google Scholar 

  30. Docx L, Sabbe B, Provinciael P, Merckx N, Morrens M (2013) Quantitative psychomotor dysfunction in schizophrenia: a loss of drive, impaired movement execution or both? Neuropsychobiology 68(4):221

    Google Scholar 

  31. Robillard R, Hermens DF, Naismith SL, White D, Rogers NL, Ip TK, Mullin SJ, Alvares GA, Guastella AJ, Smith KL et al (2015) Ambulatory sleep-wake patterns and variability in young people with emerging mental disorders. J Psychiatry Neurosci JPN 40(1):28

    Google Scholar 

  32. Kume Y, Sugita T, Oga K, Kagami K, Igarashi H (2015) A pilot study: comparative research of social functioning, circadian rhythm parameters, and cognitive function among institutional inpatients, and outpatients with chronic schizophrenia and healthy elderly people. Int Psychogeriatr 27(1):135

    Google Scholar 

  33. Jakobsen P, Garcia-Ceja E, Riegler M, Stabell LA, Nordgreen T, Torresen J, Fasmer OB, Oedegaard KJ (2020) Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls. Plos one 15(8):e0231995

    Google Scholar 

  34. Hauge ER, Berle JØ, Oedegaard KJ, Holsten F, Fasmer OB (2011) Nonlinear analysis of motor activity shows differences between schizophrenia and depression: a study using fourier analysis and sample entropy. PloS one 6(1):e16291

    Google Scholar 

  35. Krane-Gartiser K, Henriksen TE, Morken G, Vaaler AE, Fasmer OB (2018) Motor activity patterns in acute schizophrenia and other psychotic disorders can be differentiated from bipolar mania and unipolar depression. Psychiatry Res 270:418

    Google Scholar 

  36. Fasmer OB, Hauge E, Berle JØ, Dilsaver S, Oedegaard KJ (2016) Distribution of active and resting periods in the motor activity of patients with depression and schizophrenia. Psychiatry Investig 13(1):112

    Google Scholar 

  37. Wee ZY, Yong SWL, Chew QH, Guan C, Lee TS, Sim K (2019) Actigraphy studies and clinical and biobehavioural correlates in schizophrenia: a systematic review. J Neural Transm 126(5):531

    Google Scholar 

  38. Witting W, Kwa I, Eikelenboom P, Mirmiran M, Swaab DF (1990) Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry 27(6):563

    Google Scholar 

  39. Berle JO, Hauge ER, Oedegaard KJ, Holsten F, Fasmer OB (2010) Actigraphic registration of motor activity reveals a more structured behavioural pattern in schizophrenia than in major depression. BMC Res Notes 3(1):1

    Google Scholar 

  40. Wulff K, Gatti S, Wettstein JG, Foster RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosc 11(8):589

    Google Scholar 

  41. Murray G, Gottlieb J, Hidalgo MP, Etain B, Ritter P, Skene DJ, Garbazza C, Bullock B, Merikangas K, Zipunnikov V et al (2020) Measuring circadian function in bipolar disorders: empirical and conceptual review of physiological, actigraphic, and self-report approaches. Bipolar Disord 22(7):693

    Google Scholar 

  42. Martin JL, Jeste DV, Ancoli-Israel S (2005) Older schizophrenia patients have more disrupted sleep and circadian rhythms than age-matched comparison subjects. J Psychiatric Res 39(3):251

    Google Scholar 

  43. Domingues A, Paiva T, Sanches JM (2013) Sleep and wakefulness state detection in nocturnal actigraphy based on movement information. IEEE Trans Biomed Eng 61(2):426

    Google Scholar 

  44. Li X, Zhang Y, Jiang F, Zhao H (2020) A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy. Chronobiol Int. https://doi.org/10.1080/07420528.2020.1754848

    Article  Google Scholar 

  45. Bengio Y et al (1999) Markovian models for sequential data. Neural Comput Surv 2(199):129

    Google Scholar 

  46. Brémaud P (2020) Probability theory and stochastic processes. Springer, Cham

    MATH  Google Scholar 

  47. Banachewicz K, Lucas A, Van Der Vaart A (2008) Modelling portfolio defaults using hidden Markov models with covariates. Econom J 11(1):155

    MATH  Google Scholar 

  48. Martin J, Marler M, Shochat T, Ancoli-Israel S (2000) Circadian rhythms of agitation in institutionalized patients with Alzheimer’s disease. Chronobiol Int 17(3):405

    Google Scholar 

  49. Bilmes JA et al (1998) A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Int Comput Sci Inst 4(510):126

    Google Scholar 

  50. Vittinghoff E, McCulloch CE (2007) Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol 165(6):710

    Google Scholar 

  51. Pavlou M, Ambler G, Seaman S, De Iorio M, Omar RZ (2016) Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Stat Med 35(7):1159

    MathSciNet  Google Scholar 

  52. Sano W, Nakamura T, Yoshiuchi K, Kitajima T, Tsuchiya A, Esaki Y, Yamamoto Y, Iwata N (2012) Enhanced persistency of resting and active periods of locomotor activity in schizophrenia. PloS one 7(8):e43539

    Google Scholar 

  53. Lauerma H, Niskanen L, Lehtinen I, Holmstroem R (1994) Abnormal lateralization of motor activity during sleep in schizophrenia. Schizophrenia research 14(1):65

    Google Scholar 

  54. Jakobsen P, Garcia-Ceja E, Stabell LA, Oedegaard KJ, Berle JO, Thambawita V, Hicks, SA, Halvorsen P, Fasmer OB, Riegler MA (2020) In: 2020 IEEE 33rd international symposium on computer-based medical systems (CBMS) (IEEE, 2020) pp 303–308

  55. Scott J, Vaaler AE, Fasmer OB, Morken G, Krane-Gartiser K (2017) A pilot study to determine whether combinations of objectively measured activity parameters can be used to differentiate between mixed states, mania, and bipolar depression. Int J Bipolar Disord 5(1):5

    Google Scholar 

  56. Gonçalves BS, Cavalcanti PR, Tavares GR, Campos TF, Araujo JF (2014) Nonparametric methods in actigraphy: an update. Sleep Sci 7(3):158

    Google Scholar 

  57. Zuurbier LA, Luik AI, Hofman A, Franco OH, Van Someren EJ, Tiemeier H (2015) Fragmentation and stability of circadian activity rhythms predict mortality: the Rotterdam study. Am J Epidemiol 181(1):54

    Google Scholar 

  58. McFadden D et al (1973) Conditional logit analysis of qualitative choice behavior

  59. SimulaMet. Simula datasets. https://datasets.simula.no

  60. Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim Biophys Acta (BBA) Protein Struct 405(2):442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Boeker.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boeker, M., Hammer, H.L., Riegler, M.A. et al. Prediction of schizophrenia from activity data using hidden Markov model parameters. Neural Comput & Applic 35, 5619–5630 (2023). https://doi.org/10.1007/s00521-022-07845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07845-7

Keywords

Navigation