Log in

A displacement-based material point method for weakly compressible free-surface flows

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We introduce a novel displacement-based material point method for simulating weakly compressible free-surface flows and fluid–structure interaction. To address volumetric locking, we employ a \(\overline{{\textbf {B}}}\)/\(\overline{{\textbf {F}}}\)-inspired technique, previously developed for solid mechanics. This technique involves projecting the pressure and the dilatational part of the velocity gradient onto a lower-dimensional approximation space, eliminating complexities associated with two-field mixed formulations and operator splitting approaches. Additionally, to mitigate spurious pressure oscillations resulting from the use of a density-dependent equation of state, we enhance the framework with an artificial viscosity term. Finally, we employ higher-order spline background shape functions, resulting in a continuous representation of the velocity gradient and effectively preventing pressure jumps when material points cross element boundaries. Challenging numerical examples are provided to verify and validate our approach, demonstrating results that closely align with existing literature, exhibit reduced pressure oscillations, and are free of volumetric locking issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    Article  MathSciNet  Google Scholar 

  2. Harlow FH (1962) The particle-in-cell method for numerical solution of problems in fluid dynamics. Technical report, Los Alamos Scientific Lab., N. Mex

  3. Evans MW, Harlow FH, Bromberg E (1957) The particle-in-cell method for hydrodynamic calculations. Technical report, LOS ALAMOS NATIONAL LAB NM

  4. Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, North Chelmsford

    Google Scholar 

  5. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  Google Scholar 

  6. Sulsky D, Schreyer HL (1993) A particle method with large rotations applied to the penetration of history-dependent materials. ASME Appl Mech Div-Publ-AMD 171:95–95

    Google Scholar 

  7. Sulsky D, Schreyer HL (1993) The particle-in-cell method as a natural impact algorithm. ASME Appl Mech Div-Publ-AMD 180:219–219

    Google Scholar 

  8. York AR, Sulsky D, Schreyer HL (2000) Fluid-membrane interaction based on the material point method. Int J Numer Methods Eng 48(6):901–924

    Article  Google Scholar 

  9. Stomakhin A, Schroeder C, Chai L, Teran J, Selle A (2013) A material point method for snow simulation. ACM Trans Graph (TOG) 32(4):102

    Article  Google Scholar 

  10. Andersen S, Andersen L (2010) Modelling of landslides with the material-point method. Comput Geosci 14(1):137–147

    Article  Google Scholar 

  11. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5(6):477–496

    Google Scholar 

  12. Chen Z, Brannon R (2002) An evaluation of the material point method. SAND Report, SAND2002-0482

  13. Zhang DZ, Zou Q, VanderHeyden WB, Ma X (2008) Material point method applied to multiphase flows. J Comput Phys 227(6):3159–3173

    Article  MathSciNet  Google Scholar 

  14. Zhang DZ, Ma X, Giguere PT (2011) Material point method enhanced by modified gradient of shape function. J Comput Phys 230(16):6379–6398

    Article  MathSciNet  Google Scholar 

  15. Sadeghirad A, Brannon RM, Burghardt J (2011) A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int J Numer Methods Eng 86(12):1435–1456

    Article  MathSciNet  Google Scholar 

  16. Yerro A, Alonso EE, Pinyol NM (2015) The material point method for unsaturated soils. Géotechnique 65(3):201–217

    Article  Google Scholar 

  17. Homel MA, Herbold EB (2017) Field-gradient partitioning for fracture and frictional contact in the material point method. Int J Numer Methods Eng 109(7):1013–1044

    Article  MathSciNet  Google Scholar 

  18. Moutsanidis G, Kamensky D, Zhang DZ, Bazilevs Y, Long CC (2019) Modeling strong discontinuities in the material point method using a single velocity field. Comput Methods Appl Mech Eng 345:584–601

    Article  MathSciNet  Google Scholar 

  19. Moutsanidis G, Long CC, Bazilevs Y (2020) IGA-MPM: the isogeometric material point method. Comput Methods Appl Mech Eng 372:113346

    Article  MathSciNet  Google Scholar 

  20. de Vaucorbeil A, Nguyen VP, Hutchinson CR (2020) A total-Lagrangian material point method for solid mechanics problems involving large deformations. Comput Methods Appl Mech Eng 360:112783

    Article  MathSciNet  Google Scholar 

  21. de Vaucorbeil A, Nguyen VP, Sinaie S, Wu JY (2020) Material point method after 25 years: theory, implementation, and applications. Adv Appl Mech 53:185–398

    Article  Google Scholar 

  22. Ceccato F, Yerro A, Girardi V, Simonini P (2021) Two-phase dynamic MPM formulation for unsaturated soil. Comput Geotech 129:103876

    Article  Google Scholar 

  23. de Vaucorbeil A, Nguyen VP (2021) Modelling contacts with a total Lagrangian material point method. Comput Methods Appl Mech Eng 373:113503

    Article  MathSciNet  Google Scholar 

  24. Telikicherla RM, Moutsanidis G (2023) An assessment of the total Lagrangian material point method: comparison to conventional MPM, higher order basis, and treatment of near-incompressibility. Comput Methods Appl Mech Eng 414:116135

    Article  MathSciNet  Google Scholar 

  25. Vargas M, Nascimento E, Nascimento G, Hotta M, Almeida M (2018) Comparative study of the material point method and smoothed particle hydrodynamics applied to the numerical simulation of a dam-break flow in the presence of geometric obstacles. Curr J Appl Sci Technol 27(3):1–15

    Article  Google Scholar 

  26. Li JG, Hamamoto Y, Liu Y, Zhang X (2014) Sloshing impact simulation with material point method and its experimental validations. Comput Fluids 103:86–99

    Article  MathSciNet  Google Scholar 

  27. Zhao X, Liang D, Martinelli M (2017) MPM simulations of dam-break floods. J Hydrodyn 29(3):397–404

    Article  Google Scholar 

  28. Sun Z, Li H, Gan Y, Liu H, Huang Z, He L (2018) Material point method and smoothed particle hydrodynamics simulations of fluid flow problems: a comparative study. Prog Comput Fluid Dyn Int J 18(1):1–18

    Article  MathSciNet  Google Scholar 

  29. Mast CM, Mackenzie-Helnwein P, Arduino P, Miller GR, Shin W (2012) Mitigating kinematic locking in the material point method. J Comput Phys 231(16):5351–5373

    Article  MathSciNet  Google Scholar 

  30. Chen Z-P, Zhang X, Sze KY, Kan L, Qiu X-M (2018) vp material point method for weakly compressible problems. Comput Fluids 176:170–181

    Article  MathSciNet  Google Scholar 

  31. Zhang F, Zhang X, Sze KY, Lian Y, Liu Y (2017) Incompressible material point method for free surface flow. J Comput Phys 330:92–110

    Article  MathSciNet  Google Scholar 

  32. Kularathna S, Soga K (2017) Implicit formulation of material point method for analysis of incompressible materials. Comput Methods Appl Mech Eng 313:673–686

    Article  MathSciNet  Google Scholar 

  33. Zhang F, Zhang X, Liu Y (2018) An augmented incompressible material point method for modeling liquid sloshing problems. Int J Mech Mater Des 14(1):141–155

    Article  MathSciNet  Google Scholar 

  34. Zhang F, Zhang X, Sze KY, Liang Y, Liu Y (2018) Improved incompressible material point method based on particle density correction. Int J Comput Methods 15(07):1850061

    Article  MathSciNet  Google Scholar 

  35. Andersen S, Andersen L (2010) Analysis of spatial interpolation in the material-point method. Comput Struct 88(7–8):506–518

    Article  Google Scholar 

  36. Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181(3):532–549

    Article  MathSciNet  Google Scholar 

  37. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183(12):2570–2580

    Article  MathSciNet  Google Scholar 

  38. Chen Z, Zong Z, Liu MB, Li HT (2013) A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows. Int J Numer Methods Fluids 73(9):813–829

    Article  MathSciNet  Google Scholar 

  39. Zhang C, Hu XY, Adams NA (2017) A weakly compressible SPH method based on a low-dissipation Riemann solver. J Comput Phys 335:605–620

    Article  MathSciNet  Google Scholar 

  40. Dolbow J, Belytschko T (1999) Volumetric locking in the element free Galerkin method. Int J Numer Methods Eng 46(6):925–942

    Article  MathSciNet  Google Scholar 

  41. Bazilevs Y, Moutsanidis G, Bueno J, Kamran K, Kamensky D, Hillman MC, Gomez H, Chen JS (2017) A new formulation for air-blast fluid-structure interaction using an immersed approach: part II-coupling of IGA and meshfree discretizations. Comput Mech 60(1):101–116

    Article  MathSciNet  Google Scholar 

  42. Tielen R, Wobbes E, Möller M, Beuth L (2017) A high order material point method. Procedia Eng 175:265–272

    Article  Google Scholar 

  43. Gan Y, Sun Z, Chen Z, Zhang X, Liu Yu (2018) Enhancement of the material point method using B-spline basis functions. Int J Numer Methods Eng 113(3):411–431

    Article  MathSciNet  Google Scholar 

  44. Telikicherla RM, Moutsanidis G (2022) Treatment of near-incompressibility and volumetric locking in higher order material point methods. Comput Methods Appl Mech Eng 395:114985

    Article  MathSciNet  Google Scholar 

  45. VonNeumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21(3):232–237

    Article  MathSciNet  Google Scholar 

  46. Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389

    Article  Google Scholar 

  47. Morris JP, Monaghan JJ (1997) A switch to reduce SPH viscosity. J Comput Phys 136(1):41–50

    Article  MathSciNet  Google Scholar 

  48. Landshoff R (1955) A numerical method for treating fluid flow in the presence of shocks. Technical report, Los Alamos National Lab.(LANL), Los Alamos

  49. Moussa BB, Vila JP (2000) Convergence of SPH method for scalar nonlinear conservation laws. SIAM J Numer Anal 37(3):863–887

    Article  MathSciNet  Google Scholar 

  50. Parshikov AN, Medin SA (2002) Smoothed particle hydrodynamics using interparticle contact algorithms. J Comput Phys 180(1):358–382

    Article  Google Scholar 

  51. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475

    Article  Google Scholar 

  52. Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872

    Article  MathSciNet  Google Scholar 

  53. Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G (2011) \(\delta \)-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200(13–16):1526–1542

    Article  MathSciNet  Google Scholar 

  54. Simo JC, Hughes TJR (2006) Computational inelasticity, vol 7. Springer, Berlin

    Google Scholar 

  55. De Souza Neto EA, Pires FMA, Owen DRJ (2005) F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking. Int J Numer Methods Eng 62(3):353–383

    Article  Google Scholar 

  56. Andrade Pires FM, de Souza Neto EA, de la Cuesta Padilla JL (2004) An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains. Commun Numer Methods Eng 20(7):569–583

    Article  Google Scholar 

  57. Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order nurbs elements. Comput Methods Appl Mech Eng 197(33–40):2732–2762

    Article  Google Scholar 

  58. Elguedj T, Hughes TJR (2014) Isogeometric analysis of nearly incompressible large strain plasticity. Comput Methods Appl Mech Eng 268:388–416

    Article  MathSciNet  Google Scholar 

  59. Moutsanidis G, Koester JJ, Tupek MR, Chen J-S, Bazilevs Y (2020) Treatment of near-incompressibility in meshfree and immersed-particle methods. Comput Part Mech 7(2):309–327

    Article  Google Scholar 

  60. Zhao Y, Jiang C, Choo J (2023) Circumventing volumetric locking in explicit material point methods: a simple, efficient, and general approach. Int J Numer Methods Eng 124(23):5334–5355

    Article  MathSciNet  Google Scholar 

  61. Sugai R, Han J, Yamaguchi Y, Moriguchi S, Terada K (2023) Extended B-spline-based implicit material point method enhanced by F-bar projection method to suppress pressure oscillation. Int J Numer Methods Eng 124(11):2423–2448

    Article  MathSciNet  Google Scholar 

  62. Martin J, Moyce W (1952) Part IV: an experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos Trans R Soc Lond 244:312–324

    Article  Google Scholar 

  63. Hughes JP, Graham D (2010) Comparison of incompressible and weakly-compressible SPH models for free-surface water flows. J Hydraul Res 48:105–117

    Article  Google Scholar 

  64. Zhou ZQ, De Kat JO, Buchner B (1999) A nonlinear 3-d approach to simulate green water dynamics on deck. In: Proceedings of the seventh international conference on numerical ship hydrodynamics, Nantes, pp 1–15

  65. Idelsohn SR, Marti J, Limache A, Onate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762-1776

    Article  MathSciNet  Google Scholar 

  66. Lian YP, Zhang X, Liu Y (2011) Coupling of finite element method with material point method by local multi-mesh contact method. Comput Methods Appl Mech Eng 200:3482–3494

    Article  MathSciNet  Google Scholar 

  67. Chen ZP, Qiu XM, Zhang X, Lian YP (2015) Improved coupling of finite element method with material point method based on a particle-to-surface contact algorithm. Comput Methods Appl Mech Eng 293:1–19

    Article  MathSciNet  Google Scholar 

  68. Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206(1):363–393

    Article  MathSciNet  Google Scholar 

  69. Zhang Y, Zou Q, Greaves D, Reeve D, Hunt-Raby A, Graham D, James P, Lv X (2010) A level set immersed boundary method for water entry and exit. Commun Comput Phys 8(2):265–288

    Article  MathSciNet  Google Scholar 

  70. Shao SD (2009) Incompressible SPH simulation of water entry of a free-falling object. Int J Numer Methods Fluids 59(1):91–115

    Article  MathSciNet  Google Scholar 

  71. Rui Z, Faltinsen OM, Aarsnes JV (1996) Water entry of arbitrary two-dimensional sections with and without flow separation

  72. Dalcin L, Collier N, Vignal P, Côrtes AMA, Calo VM (2016) PetIGA: a framework for high-performance isogeometric analysis. Comput Methods Appl Mech Eng 308:151–181

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The computations were carried out in PetIGA, a software framework that implements NURBS-based IGA [72]. The authors would like to thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute for Advanced Computational Science at Stony Brook University for access to the high-performance SeaWulf computing system, which was made possible by a $1.4M National Science Foundation Grant (#1531492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Moutsanidis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telikicherla, R.M., Moutsanidis, G. A displacement-based material point method for weakly compressible free-surface flows. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02510-3

Keywords

Navigation