Log in

Impact of Limb Phenotype on Tongue Denervation Atrophy, Dysphagia Penetrance, and Survival Time in a Mouse Model of ALS

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Current treatments for dysphagia in ALS do not target the underlying tongue weakness and denervation atrophy that is prevalent in spinal and bulbar ALS cases. To address this clinical gap, we studied the low copy number SOD1-G93A (LCN-SOD1) mouse model of ALS to quantify the impact of limb phenotype on tongue denervation atrophy, dysphagia penetrance, and survival time in preparation for future treatment-based studies. Two male LCN-SOD1 breeders and 125 offspring were followed for limb phenotype inheritance, of which 52 (30 LCN-SOD1 and 22 wild-type/WT, both sexes) underwent characterization of dysphagia penetrance (via videofluoroscopic swallow study; VFSS) and survival time at disease end-stage (15–20% body weight loss). From these, 16 mice (8/genotype) underwent postmortem histological analysis of the genioglossus for evidence of denervation atrophy. Results revealed that both breeders displayed a mixed (hindlimb and forelimb) ALS phenotype and sired equal proportions of hindlimb vs. mixed phenotype offspring. Dysphagia penetrance was complete for mixed (100%) versus incomplete for hindlimb (64%) phenotype mice; yet survival times were similar. Regardless of limb phenotype, LCN-SOD1 mice had significantly smaller genioglossus myofibers and more centralized myonuclei compared to WT mice (p < 0.05). These biomarkers of denervation atrophy were significantly correlated with VFSS metrics (lick and swallow rates, p < 0.05) but not survival time. In conclusion, both LCN-SOD1 phenotypes had significant tongue denervation atrophy, even hindlimb phenotype mice without dysphagia. This finding recapitulates human ALS, providing robust rationale for using this preclinical model to explore targeted treatments for tongue denervation atrophy and ensuing dysphagia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci. 2004;27:723–49.

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, Rene F, Meininger V, Loeffler JP, Dupuis L. Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem. 2007;101:1153–60.

    Article  CAS  PubMed  Google Scholar 

  3. Ravits J, Appel S, Baloh RH, Barohn R, Brooks BR, Elman L, Floeter MK, Henderson C, Lomen-Hoerth C, Macklis JD, McCluskey L, Mitsumoto H, Przedborski S, Rothstein J, Trojanowski JQ, van den Berg LH, Ringel S. Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(Suppl 1):5–18.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol. 2013;12:310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brooks BR, Miller RG, Swash M, Munsat TL. Diseases WFoNRGoMN: El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.

    Article  CAS  PubMed  Google Scholar 

  6. Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet. 2007;369:2031–41.

    Article  CAS  PubMed  Google Scholar 

  7. Weikamp JG, Schelhaas HJ, Hendriks JC, de Swart BJ, Geurts AC. Prognostic value of decreased tongue strength on survival time in patients with amyotrophic lateral sclerosis. J Neurol. 2012;259:2360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dworkin JP. Tongue strength measurement in patients with amyotrophic lateral sclerosis: qualitative vs quantitative procedures. Arch Phys Med Rehabil. 1980;61:422–4.

    CAS  PubMed  Google Scholar 

  9. DePaul R, Abbs JH, Caligiuri M, Gracco VL, Brooks BR. Hypoglossal, trigeminal, and facial motoneuron involvement in amyotrophic lateral sclerosis. Neurology. 1988;38:281–3.

    Article  CAS  PubMed  Google Scholar 

  10. DePaul R, Brooks BR. Multiple orofacial indices in amyotrophic lateral sclerosis. J Speech Hear Res. 1993;36:1158–67.

    Article  CAS  PubMed  Google Scholar 

  11. Easterling C, Antinoja J, Cashin S, Barkhaus PE. Changes in tongue pressure, pulmonary function, and salivary flow in patients with amyotrophic lateral sclerosis. Dysphagia. 2013;28:217–25.

    Article  PubMed  Google Scholar 

  12. Higo R, Tayama N, Nito T. Longitudinal analysis of progression of dysphagia in amyotrophic lateral sclerosis. Auris Nasus Larynx. 2004;31:247–54.

    Article  PubMed  Google Scholar 

  13. Higo R, Tayama N, Watanabe T, Nitou T. Videomanofluorometric study in amyotrophic lateral sclerosis. Laryngoscope. 2002;112:911–7.

    Article  PubMed  Google Scholar 

  14. Robbins J. Swallowing in ALS and motor neuron disorders. Neurol Clin. 1987;5:213–29.

    Article  CAS  PubMed  Google Scholar 

  15. Waito AA, Tabor-Gray LC, Steele CM, Plowman EK. Reduced pharyngeal constriction is associated with impaired swallowing efficiency in Amyotrophic Lateral Sclerosis (ALS). Neurogastroenterol Motil. 2018;30:e13450.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Christensen PB, Hojer-Pedersen E, Jensen NB. Survival of patients with amyotrophic lateral sclerosis in 2 Danish counties. Neurology. 1990;40:600–4.

    Article  CAS  PubMed  Google Scholar 

  17. Rio A, Ellis C, Shaw C, Willey E, Ampong MA, Wijesekera L, Rittman T, Nigel Leigh P, Sidhu PS, Al-Chalabi A. Nutritional factors associated with survival following enteral tube feeding in patients with motor neurone disease. J Hum Nutr Diet. 2010;23:408–15.

    Article  CAS  PubMed  Google Scholar 

  18. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–55.

    Article  CAS  PubMed  Google Scholar 

  19. Stambler N, Charatan M, Cedarbaum JM. Prognostic indicators of survival in ALS. ALS CNTF Treat Study Gr Neurol. 1998;50:66–72.

    CAS  Google Scholar 

  20. Corcia P, Pradat PF, Salachas F, Bruneteau G, Forestier N, Seilhean D, Hauw JJ, Meininger V. Causes of death in a postmortem series of ALS patients. Amyotroph Lateral Scler. 2008;9:59–62.

    Article  PubMed  Google Scholar 

  21. Umemoto G, Furuya H, Tsuboi Y, Fujioka S, Arahata H, Sugahara M, Sakai M. Characteristics of tongue and pharyngeal pressure in patients with neuromuscular diseases. Degener Neurol Neuromuscul Dis. 2017;7:71–8.

    PubMed  PubMed Central  Google Scholar 

  22. Tabor L, Gaziano J, Watts S, Robison R, Plowman EK. Defining swallowing-related quality of life profiles in individuals with amyotrophic lateral sclerosis. Dysphagia. 2016;31:376–82.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Desport JC, Preux PM, Truong TC, Vallat JM, Sautereau D, Couratier P. Nutritional status is a prognostic factor for survival in ALS patients. Neurology. 1999;53:1059–63.

    Article  CAS  PubMed  Google Scholar 

  24. Ludolph AC, Jesse S. Evidence-based drug treatment in amyotrophic lateral sclerosis and upcoming clinical trials. Ther Adv Neurol Disord. 2009;2:319–26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petrov D, Mansfield C, Moussy A, Hermine O. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front Aging Neurosci. 2017;9:68.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jaiswal MK. Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs. Med Res Rev. 2019;39:733–48.

    Article  PubMed  Google Scholar 

  27. Osman KL, Kohlberg S, Mok A, Brooks R, Lind LA, McCormack K, Ferreira A, Kadosh M, Fagan MK, Bearce E, Nichols NL, Coates JR, Lever TE. Optimizing the translational value of mouse models of ALS for dysphagia therapeutic discovery. Dysphagia. 2020;35:343–59.

    Article  PubMed  Google Scholar 

  28. Morimoto N, Yamashita T, Sato K, Kurata T, Ikeda Y, Kusuhara T, Murata N, Abe K. Assessment of swallowing in motor neuron disease and Asidan/SCA36 patients with new methods. J Neurol Sci. 2013;324:149–55.

    Article  PubMed  Google Scholar 

  29. Epps D, Kwan JY, Russell JW, Thomas T, Diaz-Abad M. Evaluation and management of dysphagia in amyotrophic lateral sclerosis: a survey of speech-language pathologists’ clinical practice. J Clin Neuromuscul Dis. 2020;21:135–43.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sanders I, Mu L. A three-dimensional atlas of human tongue muscles. Anat Rec. 2013;296:1102–14.

    Article  Google Scholar 

  31. Bailey EF. Activities of human genioglossus motor units. Respir Physiol Neurobiol. 2011;179:14–22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tsitkanou S, Della Gatta PA, Russell AP. Skeletal muscle satellite cells, mitochondria, and MicroRNAs: their involvement in the pathogenesis of ALS. Front Physiol. 2016;7:403.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kapur K, Nagy JA, Taylor RS, Sanchez B, Rutkove SB. Estimating myofiber size with electrical impedance myography: a study in amyotrophic lateral sclerosis MICE. Muscle Nerve. 2018;58:713–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagy JA, DiDonato CJ, Rutkove SB, Sanchez B. Permittivity of ex vivo healthy and diseased murine skeletal muscle from 10 kHz to 1 MHz. Sci Data. 2019;6:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jensen L, Jorgensen LH, Bech RD, Frandsen U, Schroder HD. Skeletal muscle remodelling as a function of disease progression in amyotrophic lateral sclerosis. Biomed Res Int. 2016;2016:5930621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Folker ES, Baylies MK. Nuclear positioning in muscle development and disease. Front Physiol. 2013;4:363.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pestronk A. Denervation: ALS. Neuromuscular disease center. Washington University, St. Louis

  38. Al-Sarraj S, King A, Cleveland M, Pradat PF, Corse A, Rothstein JD, Leigh PN, Abila B, Bates S, Wurthner J, Meininger V. Mitochondrial abnormalities and low grade inflammation are present in the skeletal muscle of a minority of patients with amyotrophic lateral sclerosis; an observational myopathology study. Acta Neuropathol Commun. 2014;2:165.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhou L, Pioro EP. Familial ALS with SOD1 mutation misdiagnosed with polyradiculopathy and myopathy. Amyotroph Lateral Scler. 2009;10:476–8.

    Article  CAS  PubMed  Google Scholar 

  40. Verma A. Protein aggregates and regional disease spread in ALS is reminiscent of prion-like pathogenesis. Neurol India. 2013;61:107–10.

    Article  PubMed  Google Scholar 

  41. Manera U, Calvo A, Daviddi M, Canosa A, Vasta R, Torrieri MC, Grassano M, Brunetti M, D’Alfonso S, Corrado L, De Marchi F, Moglia C, D’Ovidio F, Mora G, Mazzini L, Chio A. Regional spreading of symptoms at diagnosis as a prognostic marker in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2020;91:291–7.

    Article  PubMed  Google Scholar 

  42. Gromicho M, Figueiral M, Uysal H, Grosskreutz J, Kuzma-Kozakiewicz M, Pinto S, Petri S, Madeira S, Swash M, de Carvalho M. Spreading in ALS: the relative impact of upper and lower motor neuron involvement. Ann Clin Transl Neurol. 2020;7:1181–92.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, et al. Motor neuron degeneration in mice that express a human Cu. Zn superoxide dismutase mutation Science. 1994;264:1772–5.

    CAS  PubMed  Google Scholar 

  44. Gurney ME. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neurol Sci. 1997;152(Suppl 1):S67-73.

    Article  CAS  PubMed  Google Scholar 

  45. Lever TE, Gorsek A, Cox KT, O’Brien KF, Capra NF, Hough MS, Murashov AK. An animal model of oral dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2009;24:180–95.

    Article  PubMed  Google Scholar 

  46. Lever TE, Simon E, Cox KT, Capra NF, O’Brien KF, Hough MS, Murashov AK. A mouse model of pharyngeal dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2010;25:112–26.

    Article  PubMed  Google Scholar 

  47. Lever TE, Braun SM, Brooks RT, Harris RA, Littrell LL, Neff RM, Hinkel CJ, Allen MJ, Ulsas MA. Adapting human videofluoroscopic swallow study methods to detect and characterize dysphagia in murine disease models. J Vis Exp. 2015;97:e52319.

    Google Scholar 

  48. Lever TE, Brooks RT, Thombs LA, Littrell LL, Harris RA, Allen MJ, Kadosh MD, Robbins KL. Videofluoroscopic validation of a translational murine model of presbyphagia. Dysphagia. 2015;30:328–42.

    Article  PubMed  Google Scholar 

  49. Welby L, Caudill H, Yitsege G, Hamad A, Bunyak F, Zohn IE, Maynard T, LaMantia AS, Mendelowitz D, Lever TE. Persistent feeding and swallowing deficits in a mouse model of 22q11.2 deletion syndrome. Front Neurol. 2020;11:4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lind LA, Lever TE, Nichols NL. Tongue and hypoglossal morphology after intralingual CTB-saporin injection. Muscle Nerve. 2020;63(3):413–20.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mayeuf-Louchart A, Hardy D, Thorel Q, Roux P, Gueniot L, Briand D, Mazeraud A, Bougle A, Shorte SL, Staels B, Chretien F, Duez H, Danckaert A. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skelet Muscle. 2018;8:25.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  53. Kletzien H, Hare AJ, Leverson G, Connor NP. Age-related effect of cell death on fiber morphology and number in tongue muscle. Muscle Nerve. 2018;57:E29–37.

    Article  CAS  PubMed  Google Scholar 

  54. Jaarsma D, Teuling E, Haasdijk ED, De Zeeuw CI, Hoogenraad CC. Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. J Neurosci. 2008;28:2075–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ceglia L, Niramitmahapanya S, Price LL, Harris SS, Fielding RA, Dawson-Hughes B. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle. Biol Proced Online. 2013;15:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gurney ME, Cutting FB, Zhai P, Andrus PK, Hall ED. Pathogenic mechanisms in familial amyotrophic lateral sclerosis due to mutation of Cu, Zn superoxide dismutase. Pathol Biol. 1996;44:51–6.

    CAS  PubMed  Google Scholar 

  57. Shibata N. Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Neuropathology. 2001;21:82–92.

    CAS  PubMed  Google Scholar 

  58. Alamolhoda M, Ayatollahi SMT, Bagheri Z. A comparative study of the impacts of unbalanced sample sizes on the four synthesized methods of meta-analytic structural equation modeling. BMC Res Notes. 2017;10:446.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Morgan CJ. Use of proper statistical techniques for research studies with small samples. Am J Physiol Lung Cell Mol Physiol. 2017;313:L873–7.

    Article  PubMed  Google Scholar 

  60. Ferdowsian HR, Beck N. Ethical and scientific considerations regarding animal testing and research. PLoS ONE. 2011;6:e24059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peggion C, Massimino ML, Biancotto G, Angeletti R, Reggiani C, Sorgato MC, Bertoli A, Stella R. Absolute quantification of myosin heavy chain isoforms by selected reaction monitoring can underscore skeletal muscle changes in a mouse model of amyotrophic lateral sclerosis. Anal Bioanal Chem. 2017;409:2143–53.

    Article  CAS  PubMed  Google Scholar 

  62. Hegedus J, Putman CT, Gordon T. Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2007;28:154–64.

    Article  CAS  PubMed  Google Scholar 

  63. Sciote JJ, Horton MJ, Rowlerson AM, Link J. Specialized cranial muscles: how different are they from limb and abdominal muscles? Cells Tissues Organs. 2003;174:73–86.

    Article  PubMed  Google Scholar 

  64. Pavlath GK, Thaloor D, Rando TA, Cheong M, English AW, Zheng B. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities. Dev Dyn. 1998;212:495–508.

    Article  CAS  PubMed  Google Scholar 

  65. Dalrymple KR, Prigozy TI, Mayo M, Kedes L, Shuler CF. Murine tongue muscle displays a distinct developmental profile of MRF and contractile gene expression. Int J Dev Biol. 1999;43:27–37.

    CAS  PubMed  Google Scholar 

  66. Sokoloff AJ. Localization and contractile properties of intrinsic longitudinal motor units of the rat tongue. J Neurophysiol. 2000;84:827–35.

    Article  CAS  PubMed  Google Scholar 

  67. Loro E, Wang SH, Schwab RJ, Khurana TS. In vivo evaluation of the mechanical and viscoelastic properties of the rat tongue. J Vis Exp. 2017;125:e56006.

    Google Scholar 

  68. Nagai H, Russell JA, Jackson MA, Connor NP. Effect of aging on tongue protrusion forces in rats. Dysphagia. 2008;23:116–21.

    Article  PubMed  Google Scholar 

  69. Smith JC, Moore WA, Goldberg SJ, Shall MS. Contractile properties and myosin heavy chain composition of rat tongue retrusor musculature show changes in early adulthood after 19 days of artificial rearing. J Appl Physiol. 1985;101(1053–1059):2006.

    Google Scholar 

  70. Ciucci MR, Schaser AJ, Russell JA. Exercise-induced rescue of tongue function without striatal dopamine sparing in a rat neurotoxin model of Parkinson disease. Behav Brain Res. 2013;252:239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb Perspect Med. 2017;7:a024117.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhenfei L, Shiru D, **aomeng Z, Cuifang C, Yaling L. Discontiguous or contiguous spread patterns affect the functional staging in patients with sporadic amyotrophic lateral sclerosis. Front Neurol. 2019;10:523.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We graciously thank students and research staff in the Lever and Nichols labs for assistance with histology (Lori Lind and Catherine Smith) and VFSS analysis (Amy Keilholz). We also thank our university’s veterinary staff for excellent care of our mouse colony.

Funding

This study was funded in part by two grants from the National Institutes of Health: (1) R21 DC016071, National Institute on Deafness and Other Communication Disorders (T.E. Lever) and (2) R01HL153612, National Heart, Lung, and Blood Institute (T.E. Lever and N.L. Nichols). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa E. Lever.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, M., Thompson, R., Osman, K.L. et al. Impact of Limb Phenotype on Tongue Denervation Atrophy, Dysphagia Penetrance, and Survival Time in a Mouse Model of ALS. Dysphagia 37, 1777–1795 (2022). https://doi.org/10.1007/s00455-022-10442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-022-10442-4

Keywords

Navigation