Log in

A Mouse Model of Pharyngeal Dysphagia in Amyotrophic Lateral Sclerosis

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

We recently established that the SOD1-G93A transgenic mouse is a suitable model for oral-stage dysphagia in amyotrophic lateral sclerosis (ALS). The purpose of the present study was to determine whether it could serve as a model for pharyngeal-stage dysphagia as well. Electrophysiological and histological experiments were conducted on end-stage SOD1-G93A transgenic mice (n = 9) and age-matched wild-type (WT) littermates (n = 12). Transgenic mice required a twofold higher stimulus frequency (40 Hz) applied to the superior laryngeal nerve (SLN) to evoke swallowing compared with WT controls (20 Hz); transgenic females required a significantly higher (P < 0.05) stimulus frequency applied to the SLN to evoke swallowing compared with transgenic males. Thus, both sexes demonstrated electrophysiological evidence of pharyngeal dysphagia but symptoms were more severe for females. Histological evidence of neurodegeneration (vacuoles) was identified throughout representative motor (nucleus ambiguus) and sensory (nucleus tractus solitarius) components of the pharyngeal stage of swallowing, suggesting that pharyngeal dysphagia in ALS may be attributed to both motor and sensory pathologies. Moreover, the results of this investigation suggest that sensory stimulation approaches may facilitate swallowing function in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hillel AD, Miller RM. Management of bulbar symptoms in amyotrophic lateral sclerosis. Adv Exp Med Biol. 1987;209:201–21.

    CAS  PubMed  Google Scholar 

  2. Tayama N. Dysphagia in amyotrophic lateral sclerosis—the mechanism and managements. Rinsho Shinkeigaku. 1995;35:1557–9.

    CAS  PubMed  Google Scholar 

  3. Higo R, Tayama N, Watanabe T, Nitou T. Videomanofluorometric study in amyotrophic lateral sclerosis. Laryngoscope. 2002;112:911–7. doi:10.1097/00005537-200205000-00024.

    Article  PubMed  Google Scholar 

  4. Kawai S, Tsukuda M, Mochimatsu I, Enomoto H, Kagesato Y, Hirose H, et al. A study of the early stage of dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2003;18:1–8. doi:10.1007/s00455-002-0074-3.

    Article  PubMed  Google Scholar 

  5. Logemann JA. Evaluation and treatment of swallowing disorders. 2nd ed. Austin, TX: Pro-Ed; 1998.

    Google Scholar 

  6. Perlman AL, Schulze-Delrieu K. Deglutition and its disorders: anatomy, physiology, clinical diagnosis, and management. San Diego, CA: Singular Publishing Group; 1997.

    Google Scholar 

  7. Ertekin C, Aydogdu I, Yuceyar N, Kiylioglu N, Tarlaci S, Uludag B. Pathophysiological mechanisms of oropharyngeal dysphagia in amyotrophic lateral sclerosis. Brain. 2000;123(Pt 1):125–40. doi:10.1093/brain/123.1.125.

    Article  PubMed  Google Scholar 

  8. Ermilova IP, Ermilov VB, Levy M, Ho E, Pereira C, Beckman JS. Protection by dietary zinc in ALS mutant G93A SOD transgenic mice. Neurosci Lett. 2005;379:42–6. doi:10.1016/j.neulet.2004.12.045.

    Article  CAS  PubMed  Google Scholar 

  9. Gurney ME. Transgenic animal models of familial amyotrophic lateral sclerosis. J Neurol. 1997;244(Suppl 2):S15–20.

    Article  PubMed  Google Scholar 

  10. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 1994;264:1772–5. doi:10.1126/science.8209258.

    Article  CAS  PubMed  Google Scholar 

  11. Miana-Mena FJ, Munoz MJ, Yague G, Mendez M, Moreno M, Ciriza J, et al. Optimal methods to characterize the G93A mouse model of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2005;6:55–62. doi:10.1080/17434470510045230.

    Article  CAS  PubMed  Google Scholar 

  12. Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med. 2005;11:429–33. doi:10.1038/nm1205.

    Article  CAS  PubMed  Google Scholar 

  13. Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med. 2005;11:423–8. doi:10.1038/nm1207.

    Article  CAS  PubMed  Google Scholar 

  14. Sasaki S, Warita H, Abe K, Iwata M. Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. 2005;110:48–56. doi:10.1007/s00401-005-1021-9.

    Article  CAS  PubMed  Google Scholar 

  15. Zang DW, Yang Q, Wang HX, Egan G, Lopes EC, Cheema SS. Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci. 2004;20:1745–51. doi:10.1111/j.1460-9568.2004.03648.x.

    Article  PubMed  Google Scholar 

  16. Lever TE, Gorsek A, Cox KT, O’Brien KF, Capra NF, Hough MS, et al. An animal model of oral dysphagia in amyotrophic lateral sclerosis. Dysphagia. 2009;24:000–000.

    Article  Google Scholar 

  17. Perlman AL, editor. Disordered swallowing. San Diego, CA: Singular Publishing Group; 1994.

    Google Scholar 

  18. Baredes S. Surgical management of swallowing disorders. Otolaryngol Clin North Am. 1988;21:711–20.

    CAS  PubMed  Google Scholar 

  19. Miller AJ. Deglutition. Physiol Rev. 1982;62:129–84.

    CAS  PubMed  Google Scholar 

  20. Hiiemae KM, Palmer JB. Food transport and bolus formation during complete feeding sequences on foods of different initial consistency. Dysphagia. 1999;14:31–42. doi:10.1007/PL00009582.

    Article  CAS  PubMed  Google Scholar 

  21. Leder SB, Novella S, Patwa H. Use of fiberoptic endoscopic evaluation of swallowing (FEES) in patients with amyotrophic lateral sclerosis. Dysphagia. 2004;19:177–81. doi:10.1007/s00455-004-0009-2.

    Article  PubMed  Google Scholar 

  22. Ohkubo H. Dysphagia in amyotrophic lateral sclerosis—electromyographic and radiological investigations. Otol Fukuoka. 1980;26:44–78.

    Google Scholar 

  23. Hillel AD, Miller R. Bulbar amyotrophic lateral sclerosis: patterns of progression and clinical management. Head Neck. 1989;11:51–9. doi:10.1002/hed.2880110110.

    Article  CAS  PubMed  Google Scholar 

  24. Angenstein F, Niessen HG, Goldschmidt J, Vielhaber S, Ludolph AC, Scheich H. Age-dependent changes in MRI of motor brain stem nuclei in a mouse model of ALS. Neuroreport. 2004;15:2271–4. doi:10.1097/00001756-200410050-00026.

    Article  PubMed  Google Scholar 

  25. Mulder DW, Bushek W, Spring E, Karnes J, Dyck PJ. Motor neuron disease (ALS): evaluation of detection thresholds of cutaneous sensation. Neurology. 1983;33:1625–7.

    CAS  PubMed  Google Scholar 

  26. Ben Hamida M, Letaief F, Hentati F, Ben Hamida C. Morphometric study of the sensory nerve in classical (or Charcot disease) and juvenile amyotrophic lateral sclerosis. J Neurol Sci. 1987;78:313–29. doi:10.1016/0022-510X(87)90045-1.

    Article  CAS  PubMed  Google Scholar 

  27. Kawamura Y, Dyck PJ, Shimono M, Okazaki H, Tateishi J, Doi H. Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1981;40:667–75. doi:10.1097/00005072-198111000-00008.

    Article  CAS  PubMed  Google Scholar 

  28. Heads T, Pollock M, Robertson A, Sutherland WH, Allpress S. Sensory nerve pathology in amyotrophic lateral sclerosis. Acta Neuropathol. 1991;82:316–20. doi:10.1007/BF00308818.

    Article  CAS  PubMed  Google Scholar 

  29. Theys PA, Peeters E, Robberecht W. Evolution of motor and sensory deficits in amyotrophic lateral sclerosis estimated by neurophysiological techniques. J Neurol. 1999;246:438–42. doi:10.1007/s004150050379.

    Article  CAS  PubMed  Google Scholar 

  30. Shefner JM, Tyler HR, Krarup C. Abnormalities in the sensory action potential in patients with amyotrophic lateral sclerosis. Muscle Nerve. 1991;14:1242–6. doi:10.1002/mus.880141218.

    Article  CAS  PubMed  Google Scholar 

  31. Nolte J. The human brain: an introduction to its functional anatomy. 5th ed. St. Louis, MO: Mosby, Inc.; 2002.

    Google Scholar 

  32. Seikel JA, King DW, Drumright DG. Neuroanatomy. In: Seikel JA, King DW, Drumright DG, editors. Anatomy & physiology for speech, language, and hearing. 3rd ed. Clifton Park, NY: Thomson Delmar Learning; 2005. p. 495–620.

    Google Scholar 

  33. Corbin-Lewis K, Liss JM, Sciortino KL. Clinical anatomy & physiology of the swallow mechanism. Clifton Park, NY: Thomson Delmar; 2004.

    Google Scholar 

  34. Miller AJ. The neuroscientific principles of swallowing and dysphagia. San Diego, CA: Singular Publishing Group; 1999.

    Google Scholar 

  35. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69.

    CAS  PubMed  Google Scholar 

  36. Preston DC, Shapiro BE, Basic electromyography: analysis of motor unit action potentials. In: Electromyography and neuromuscular disorders: clinical-electrophysiologic correlations. Philadelphia: Elsevier; 2005, p. 215–29.

  37. Thexton AJ, Crompton AW, German RZ. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J Appl Physiol. 2007;102:587–600. doi:10.1152/japplphysiol.00456.2006.

    Article  CAS  PubMed  Google Scholar 

  38. Doty RW, Bosma JF. An electromyographic analysis of reflex deglutition. J Neurophysiol. 1956;19:44–60.

    CAS  PubMed  Google Scholar 

  39. Basmajian JV, Deluca CJ. Muscles alive: their functions revealed by electromyography. 5th ed. Baltimore: Williams & Wilkins; 1985.

    Google Scholar 

  40. Strand EA, Miller RM, Yorkston KM, Hillel AD. Management of oral-pharyngeal dysphagia symptoms in amyotrophic lateral sclerosis. Dysphagia. 1996;11:129–39. doi:10.1007/BF00417903.

    Article  CAS  PubMed  Google Scholar 

  41. The Jackson Laboratory, Genoty** Protocol for SOD; 2005. http://jaxmice.jax.org/pub-cgi/protocols/protocols.sh?objtype=protocol&protocol_id=523.

  42. Sang Q, Goyal RK. Swallowing reflex and brain stem neurons activated by superior laryngeal nerve stimulation in the mouse. Am J Physiol Gastrointest Liver Physiol. 2001;280:G191–200.

    CAS  PubMed  Google Scholar 

  43. Sinclair WJ. Role of the pharyngeal plexus in initiation of swallowing. Am J Physiol. 1971;221:1260–3.

    CAS  PubMed  Google Scholar 

  44. Bieger D, Hockman CH. Suprabulbar modulation of reflex swallowing. Exp Neurol. 1976;52:311–24. doi:10.1016/0014-4886(76)90174-6.

    Article  CAS  PubMed  Google Scholar 

  45. Beyak MJ, Collman PI, Valdez DT, Xue S, Diamant NE. Superior laryngeal nerve stimulation in the cat: effect on oropharyngeal swallowing, oesophageal motility and lower oesophageal sphincter activity. Neurogastroenterol Motil. 1997;9:117–27. doi:10.1046/j.1365-2982.1997.d01-22.x.

    Article  CAS  PubMed  Google Scholar 

  46. Fenik V, Fenik P, Kubin L. A simple cuff electrode for nerve recording and stimulation in acute experiments on small animals. J Neurosci Methods. 2001;106:147–51. doi:10.1016/S0165-0270(01)00340-5.

    Article  CAS  PubMed  Google Scholar 

  47. Weerasuriya A, Bieger D, Hockman CH. Interaction between primary afferent nerves in the elicitation of reflex swallowing. Am J Physiol. 1980;239:R407–14.

    CAS  PubMed  Google Scholar 

  48. Miller AJ. Characteristics of the swallowing reflex induced by peripheral nerve and brain stem stimulation. Exp Neurol. 1972;34:210–22. doi:10.1016/0014-4886(72)90168-9.

    Article  CAS  PubMed  Google Scholar 

  49. Makowska A, Panfil C, Ellrich J. Long-term potentiation of orofacial sensorimotor processing by noxious input from the semispinal neck muscle in mice. Cephalalgia. 2004;25:109–16.

    Article  Google Scholar 

  50. Donnelly DF, Rigual R. Single-unit recordings of arterial chemoreceptors from mouse petrosal ganglia in vitro. J Appl Physiol. 2000;88:1489–95.

    CAS  PubMed  Google Scholar 

  51. Ellrich J, Wesselak M. Electrophysiology of sensory and sensorimotor processing in mice under general anesthesia. Brain Res Brain Res Protoc. 2003;11:178–88. doi:10.1016/S1385-299X(03)00045-X.

    Article  PubMed  Google Scholar 

  52. Pachner AR, Kantor FS. Nerve stimulation test in murine experimental autoimmune myasthenia gravis. Ann Neurol. 1982;11:48–52. doi:10.1002/ana.410110109.

    Article  CAS  PubMed  Google Scholar 

  53. Preston DC, Shapiro BE, Basic electromyography: analysis of spontaneous activity. In: Electromyography and neuromuscular disorders: clinical-electrophysiologic correlations. 2nd ed. Philadelphia: Elsevier; 2005, p. 199–213.

  54. Amirali A, Tsai G, Schrader N, Weisz D, Sanders I. Map** of brain stem neuronal circuitry active during swallowing. Ann Otol Rhinol Laryngol. 2001;110:502–13.

    CAS  PubMed  Google Scholar 

  55. Gidda JS, Goyal RK. Swallow-evoked action potentials in vagal preganglionic efferents. J Neurophysiol. 1984;52:1169–80.

    CAS  PubMed  Google Scholar 

  56. Doty RW. Influence of stimulus pattern on reflex deglutition. Am J Physiol. 1951;166:142–58.

    CAS  PubMed  Google Scholar 

  57. Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114:2226–44. doi:10.1016/S1388-2457(03)00237-2.

    Article  PubMed  Google Scholar 

  58. Fukushima S, Shingai T, Kitagawa J, Takahashi Y, Taguchi Y, Noda T, et al. Role of the pharyngeal branch of the vagus nerve in laryngeal elevation and UES pressure during swallowing in rabbits. Dysphagia. 2003;18:58–63. doi:10.1007/s00455-002-0082-3.

    Article  PubMed  Google Scholar 

  59. Kajii Y, Shingai T, Kitagawa J, Takahashi Y, Taguchi Y, Noda T, et al. Sour taste stimulation facilitates reflex swallowing from the pharynx and larynx in the rat. Physiol Behav. 2002;77:321–5. doi:10.1016/S0031-9384(02)00854-5.

    Article  CAS  PubMed  Google Scholar 

  60. Barkmeier JM, Bielamowicz S, Takeda N, Ludlow CL. Modulation of laryngeal responses to superior laryngeal nerve stimulation by volitional swallowing in awake humans. J Neurophysiol. 2000;83:1264–72.

    CAS  PubMed  Google Scholar 

  61. Ambalavanar R, Tanaka Y, Selbie WS, Ludlow CL. Neuronal activation in the medulla oblongata during selective elicitation of the laryngeal adductor response. J Neurophysiol. 2004;92:2920–32. doi:10.1152/jn.00064.2004.

    Article  PubMed  Google Scholar 

  62. Haenggeli C, Kato AC. Differential vulnerability of cranial motoneurons in mouse models with motor neuron degeneration. Neurosci Lett. 2002;335:39–43. doi:10.1016/S0304-3940(02)01140-0.

    Article  CAS  PubMed  Google Scholar 

  63. Prophet EB, Mills R. AFIP laboratory methods in histotechnology. Washington, DC: Armed Forces Institute of Pathology; 1992.

    Google Scholar 

  64. Paxinos G, Franklin K. The mouse brain in stereotaxic coordinates. 2nd ed. Sydney, Australia: Academic Press; 2001.

    Google Scholar 

  65. Brash JC. Cunningham’s manual of practical anatomy. 12th ed. London: Oxford University Press; 1958.

    Google Scholar 

  66. Popesko P, Rajtova V, Horak J. A colour atlas of anatomy of small laboratory animals: rat, mouse, hamster. Bratislava, Slovakia: Wolfe Publishing Ltd.; 1992.

    Google Scholar 

  67. Forthofer RN, Lee ES, Hernandez M. Biostatistics: a guide to design, analysis, and discovery. 2nd ed. Burlington, MA: Elsevier; 2007.

    Google Scholar 

  68. Chi-Fishman G, Capra NF, McCall GN. Thermomechanical facilitation of swallowing evoked by electrical nerve stimulation in cats. Dysphagia. 1994;9:149–55. doi:10.1007/BF00341258.

    Article  CAS  PubMed  Google Scholar 

  69. Doty RW. Neural organization of deglutition. In: Doty RW, editor. The alimentary canal. Washington, DC: American Physiologic Society; 1968. p. 1861–902.

    Google Scholar 

  70. Kessler JP, Jean A. Identification of the medullary swallowing regions in the rat. Exp Brain Res. 1985;57:256–63. doi:10.1007/BF00236530.

    Article  CAS  PubMed  Google Scholar 

  71. Finsterer J, Erdorf M, Mamoli B, Fuglsang-Frederiksen A. Needle electromyography of bulbar muscles in patients with amyotrophic lateral sclerosis: evidence of subclinical involvement. Neurology. 1998;51:1417–22.

    CAS  PubMed  Google Scholar 

  72. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis. 2009;4:3. doi:10.1186/1750-1172-4-3.

    Article  PubMed  Google Scholar 

  73. Preston DC, Shapiro BE, Amyotrophic lateral sclerosis and its variants. In: Electromyography and neuromuscular disorders: clinical-electrophysiologic correlations, 2nd ed. Philadelphia: Elsevier; 2005, p. 423–37.

  74. Dal Canto MC, Gurney ME. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol. 1994;145:1271–9.

    CAS  PubMed  Google Scholar 

  75. Dal Canto MC, Gurney ME. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 1995;676:25–40. doi:10.1016/0006-8993(95)00063-V.

    Article  CAS  PubMed  Google Scholar 

  76. Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci. 1998;18:3241–50.

    CAS  PubMed  Google Scholar 

  77. Wong PC, Marszalek J, Crawford TO, Xu Z, Hsieh ST, Griffin JW, et al. Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons. J Cell Biol. 1995;130:1413–22. doi:10.1083/jcb.130.6.1413.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Elena Pak, Waseem Ahmed, Vladim Bobrovnikov, Mohamed Raafat, and Di Wu for their invaluable assistance with data collection. We also thank Drs. Richard Ray, Timothy A. Jones, Monica Carrion-Jones, and Edward Lieberman for their insightful comments and suggestions regarding our electrophysiological methods and data interpretation. We express our gratitude to Ms. Joani Zary and Dr. Hubert Burden for their expert guidance in histological methods. Our highest gratitude extends to the veterinary staff who kindly maintained the mouse colony for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa E. Lever.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lever, T.E., Simon, E., Cox, K.T. et al. A Mouse Model of Pharyngeal Dysphagia in Amyotrophic Lateral Sclerosis. Dysphagia 25, 112–126 (2010). https://doi.org/10.1007/s00455-009-9232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-009-9232-1

Keywords

Navigation