Log in

Ammonium sulfate supplementation enhances erythromycin biosynthesis by augmenting intracellular metabolism and precursor supply in Saccharopolyspora erythraea

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, the cellular metabolic mechanisms regarding ammonium sulfate supplementation on erythromycin production were investigated by employing targeted metabolomics and metabolic flux analysis. The results suggested that the addition of ammonium sulfate stimulates erythromycin biosynthesis. Targeted metabolomics analysis uncovered that the addition of ammonium sulfate during the late stage of fermentation resulted in an augmented intracellular amino acid metabolism pool, guaranteeing an ample supply of precursors for organic acids and coenzyme A-related compounds. Therefore, adequate precursors facilitated cellular maintenance and erythromycin biosynthesis. Subsequently, an optimal supplementation rate of 0.02 g/L/h was determined. The results exhibited that erythromycin titer (1311.1 μg/mL) and specific production rate (0.008 mmol/gDCW/h) were 101.3% and 41.0% higher than those of the process without ammonium sulfate supplementation, respectively. Moreover, the erythromycin A component proportion increased from 83.2% to 99.5%. Metabolic flux analysis revealed increased metabolic fluxes with the supplementation of three ammonium sulfate rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Oliynyk M, Samborskyy M, Lester J, Mironenko T, Scott N, Dickens S, Leadlay P (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25:447–453

    Article  CAS  PubMed  Google Scholar 

  2. Mironov V, Sergienko O, Nastasyak I, Danilenko V (2004) Biogenesis and regulation of biosynthesis of erythromycins in Saccharopolyspora erythraea. Appl Biochem Microbiol 40:531–541

    Article  CAS  Google Scholar 

  3. Li X, Ke X, Qiao L, Sui Y, Chu J (2022) Comparative genomic and transcriptomic analysis guides to further enhance the biosynthesis of erythromycin by an overproducer. Biotechnol Bioeng 119(6):1624–1640

    Article  CAS  PubMed  Google Scholar 

  4. Karničar K, Drobnak I, Petek M, Magdevska V, Horvat J, Vidmar R, Baebler Š, Rotter A, Jamnik P, Fujs Š et al (2016) Integrated omics approaches provide strategies for rapid erythromycin yield increase in Saccharopolyspora erythraea. Microb Cell Fact 15:93

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen C, Hong M, Chu J, Huang M, Ouyang L, Tian X, Zhuang Y (2017) Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea. Bioprocess Biosyst Eng 40:201–209

    Article  CAS  PubMed  Google Scholar 

  6. Xu F, Ke X, Hong M, Huang M, Chen C, Tian X, Hang H, Chu J (2021) Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via 13C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea. Biochem Biophys Res Commun 542:73–79

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Huang M, Wang Z, Chu J, Zhuang Y, Zhang S (2013) Controlling the feed rate of glucose and propanol for the enhancement of erythromycin production and exploration of propanol metabolism fate by quantitative metabolic flux analysis. Bioprocess Biosyst Eng 36:1445–1453

    Article  CAS  PubMed  Google Scholar 

  8. Xu F, Lu J, Ke X, Shao M, Huang M, Chu J (2022) Reconstruction of the genome-scale metabolic model of Saccharopolyspora erythraea and its application in the overproduction of erythromycin. Metabolites 12(6):509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zou X, Hang H, Chu J, Zhuang Y, Zhang S (2009) Enhancement of erythromycin A production with feeding available nitrogen sources in erythromycin biosynthesis phase. Bioresour Technol 100:3358–3365

    Article  CAS  PubMed  Google Scholar 

  10. Technikova-Dobrova Z, Damiano F, Tredici S et al (2004) Design of mineral medium for growth of Actinomadura sp. ATCC 39727, producer of the glycopeptide A40926: effects of calcium ions and nitrogen sources. Appl Microbiol Biotechnol 65(6):671–677

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez R, Islas L, Obregon AM, Escalante L, Sanchez S (1995) Gentamicin formation in Micromonospora purpurea: stimulatory effect of ammonium. J Antibiot (Tokyo) 48(6):479–483

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Q, Hang H, Tian X, Zeng W, Yu Z, Wang X, Tang Y, Zhuang Y, Chu J (2019) Combined available nitrogen resources enhanced erythromycin production and preliminary exploration of metabolic flux analysis under nitrogen perturbations. Bioprocess Biosyst Eng 42(11):1747–1756

    Article  CAS  PubMed  Google Scholar 

  13. Zhu C, Lu F, He Y, Han Z, Du L (2007) Regulation of avilamycin biosynthesis in Streptomyces viridochromogenes: effects of glucose, ammonium ion, and inorganic phosphate. Appl Microbiol Biotechnol 73(5):1031–1038

    Article  CAS  PubMed  Google Scholar 

  14. Sévin D, Kuehne A, Zamboni N, Sauer U (2015) Biological insights through nontargeted metabolomics. Curr Opin Biotechnol 34:1–8

    Article  PubMed  Google Scholar 

  15. Ellis D, Goodacre R (2012) Metabolomics-assisted synthetic biology. Curr Opin Biotechnol 23:22–28

    Article  CAS  PubMed  Google Scholar 

  16. **a M, Huang D, Li S, Wen J, Jia X, Chen Y (2013) Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 110:2717–2730

    Article  CAS  PubMed  Google Scholar 

  17. Taymaz-Nikerel H, De Mey M, Baart G, Maertens J, Heijnen J, van Gulik W (2013) Changes in substrate availability in Escherichia coli lead to rapid metabolite, flux and growth rate responses. Metab Eng 16:115–129

    Article  CAS  PubMed  Google Scholar 

  18. de Jonge LP, Buijs NA, ten Pierick A, Deshmukh A, Zhao Z, Kiel JA, Heijnen JJ, van Gulik WM (2011) Scale-down of penicillin production in Penicillium chrysogenum. Biotechnol J 6:944–958

    Article  PubMed  Google Scholar 

  19. Jordà J, Rojas H, Carnicer M, Wahl A, Ferrer P, Albiol J (2014) Quantitative metabolomics and instationary 13C-metabolic flux analysis reveals impact of recombinant protein production on trehalose and energy metabolism in Pichia pastoris. Metabolites 4:281–299

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zamboni N, Fendt S-M, Ruhl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  CAS  PubMed  Google Scholar 

  21. Antoniewicz M (2013) 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol 24:1116–1121

    Article  CAS  PubMed  Google Scholar 

  22. Niedenführ S, Wiechert W, Nöh K (2015) How to measure metabolic fluxes: a taxonomic guide for 13C fluxomics. Curr Opin Biotechnol 34:82–90

    Article  PubMed  Google Scholar 

  23. Driouch H, Melzer G, Wittmann C (2012) Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng 14:47–58

    Article  CAS  PubMed  Google Scholar 

  24. Lu H, Liu X, Huang M, **a J, Chu J, Zhuang Y, Zhang S, Noorman H (2015) Integrated isotope-assisted metabolomics and (13)C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger. Microb Cell Fact 14:147

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu W, Xu F, Song W, Dong L, Qian J, Huang M (2022) Untargeted metabolomics combined with metabolic flux analysis reveals the mechanism of sodium citrate for high S-adenosyl-methionine production by Pichia pastoris. Fermentation 8(12):681

    Article  CAS  Google Scholar 

  26. Hong M, Liao J, Chu J (2018) High-throughput optimization of the chemically defined synthetic medium for the production of erythromycin A. Bioprocess Biosyst Eng 41:1529–1538

    Article  CAS  PubMed  Google Scholar 

  27. Hong M, Mou H, Liu X, Huang M, Chu J (2017) 13C-assisted metabolomics analysis reveals the positive correlation between specific erythromycin production rate and intracellular propionyl-CoA pool size in Saccharopolyspora erythraea. Bioprocess Biosyst Eng 40:1337–1348

    Article  CAS  PubMed  Google Scholar 

  28. Xu F, Zhang X, Liu L, Ke X, Wu J, Guo Y, Tian X, Chu J (2022) Engineering the methyltransferase through inactivation of the genK and genL leads to a significant increase of gentamicin C1a production in an industrial strain of Micromonospora echinospora 49-92S. Bioprocess Biosyst Eng 45(10):1693–1703

    Article  CAS  PubMed  Google Scholar 

  29. Douma R, de Jonge L, Jonker CT, Seifar R, Heijnen J, van Gulik W (2010) Intracellular metabolite determination in the presence of extracellular abundance: application to the penicillin biosynthesis pathway in Penicillium chrysogenum. Biotechnol Bioeng 107:105–115

    Article  CAS  PubMed  Google Scholar 

  30. Wu L, Mashego M, van Dam J, Proell A, Vinke J, Ras C, van Winden W, van Gulik W, Heijnen J (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly C-13-labeled cell extracts as internal standards. Anal Biochem 336:164–171

    Article  CAS  PubMed  Google Scholar 

  31. Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, **a J (2022) Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc 17:1735–1761

    Article  CAS  PubMed  Google Scholar 

  32. Hong M, Huang M, Chu J, Zhuang Y, Zhang S (2016) Impacts of proline on the central metabolism of an industrial erythromycin-producing strain Saccharopolyspora erythraea via (13)C labeling experiments. J Biotechnol 231:1–8

    Article  CAS  PubMed  Google Scholar 

  33. Mckenna M, Rae C (2015) A new role for α-ketoglutarate dehydrogenase complex: regulating metabolism through post-translational modification of other enzymes. J Neurochem 134(1):3–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ke X, Jiang X, Huang M, Tian X, Chu J (2022) Engineering of succinyl-CoA metabolism in view of succinylation regulation to improve the erythromycin production. Appl Microbiol Biotechnol 106(13–16):5153–5165

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Chen C, Zhu F, Li Y (2005) Optimization of producing erythromycin and transforming its efficient components. Chin J Antibiot 02:65–69

    Google Scholar 

  36. Elmahdi I, Baganz F, Dixon K, Harrop T, Sugden D, Lye G (2003) pH control in microwell fermentations of S. erythraea CA340: influence on biomass growth kinetics and erythromycin biosynthesis. Biochem Eng J 16(3):299–310

    Article  CAS  Google Scholar 

  37. Maeda RN, Silva MMPD, Anna LMMS Jr (2010) Nitrogen source optimization for cellulase production by Penicillium funiculosum, using a sequential experimental design methodology and the desirability function. Appl Biochem Biotechnol 161(1–8):411–422

    Article  CAS  PubMed  Google Scholar 

  38. Reeves A, Brikun I, Cernota W, Leach B, Gonzalez M, Weber JM (2007) Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab Eng 9(3):293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung WS, Yoo YJ, Park JW, Park SR, Han AR, Ban YH, Kim EJ, Kim E, Yoon YJ (2011) A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253. Appl Microbiol Biotechnol 91(5):1389–1397

    Article  CAS  PubMed  Google Scholar 

  40. Lee WH, Chin YW, Han NS, Kim MD, Seo JH (2011) Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Appl Microbiol Biotechnol 91(4):967–976

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2019YFA0904300), National Natural Science Foundation of China (Grant No. 32071461), and the National Key Research and Development Program of China (Grant No. 2018YFA0900300).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Mingzhi Huang, Ju Chu]; methodology: [Yujie Yuan, Feng Xu]; formal analysis and investigation: [Yujie Yuan, **ang Ke, Ju Lu, Feng Xu]; writing—original draft preparation: [Yujie Yuan, Feng Xu]; writing—review and editing: [Feng Xu, Mingzhi Huang, Ju Chu]; funding acquisition: [Mingzhi Huang, Ju Chu]; supervision: [Mingzhi Huang, Ju Chu].

Corresponding authors

Correspondence to Mingzhi Huang or Ju Chu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Xu, F., Ke, X. et al. Ammonium sulfate supplementation enhances erythromycin biosynthesis by augmenting intracellular metabolism and precursor supply in Saccharopolyspora erythraea. Bioprocess Biosyst Eng 46, 1303–1318 (2023). https://doi.org/10.1007/s00449-023-02898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02898-x

Keywords

Navigation