Log in

Prepubertal nutritional modulation in the bull and its impact on sperm DNA methylation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Enhanced pre-pubertal nutrition in Holstein bulls increased reproductive hormone production and sperm production potential with no negative effects on sperm quality. However, recent trends in human epigenetic research have identified pre-pubertal period to be critical for epigenetic reprogramming in males. Our objective was to evaluate the methylation changes in sperm of bulls exposed to different pre-pubertal diets. One-week-old Holstein bull calves (n = 9), randomly allocated to 3 groups, were fed either a high, medium or low diet (20%, 17% or 12.2% crude protein and 67.9%, 66% or 62.9% total digestible nutrients, respectively) from 2 to 32 weeks of age, followed by medium nutrition. Semen collected from bulls at two specific time points, i.e. 55–59 and 69–71 weeks, was diluted, cryopreserved and used for reduced representation bisulfite sequencing. Differential methylation was detected for dietary treatment, but minimal differences were detected with age. The gene ontology term, “regulation of Rho protein signal transduction”, implicated in sperm motility and acrosome reaction, was enriched in both low-vs-high and low-vs-medium datasets. Furthermore, several genes implicated in early embryo and foetal development showed differential methylation for diet. Our results therefore suggest that sperm epigenome keeps the memory of diet during pre-pubertal period in genes important for spermatogenesis, sperm function and early embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analysed during the current study are available in the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB35854 (https://www.ebi.ac.uk/ena/data/view/PRJEB35854).

References

  • Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE (2012) MethylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87

    Article  PubMed  PubMed Central  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of rna synthesis. Proc Natl Acad Sci USA 51(5):786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almog T, Lazar S, Reiss N, Etkovitz N, Milch E, Rahamim N, Bekma D-B, Rotem R, Kalina M, Ramon J, Raziel A, Breitbart H, Seger R, Naor Z (2008) Identification of extracellular signal-regulated kinase 1/2 and p38 MAPK as regulators of human sperm motility and acrosome reaction and as predictors of poor spermatozoan quality. J Biol Chem 283:14479–14489

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ (1992) Fetal and infant origins of adult disease. BMJ

  • Barker DJ, Martyn CN (1992) The maternal and fetal origins of cardiovascular disease. J Epidemiology Community Health 46:8–11

    Article  CAS  Google Scholar 

  • Barker DJ (2004) The developmental origins of adult disease. J Am Coll Nutr 23:588S-595S

    Article  CAS  PubMed  Google Scholar 

  • Barth AD, Brito LFC, Kastelic JP (2008) The effect of nutrition on sexual development of bulls. Theriogenology 70:485–494

    Article  CAS  PubMed  Google Scholar 

  • Bartholomew RA, Parks JE (2007) Identification, localization, and sequencing of fetal bovine VASA homolog. Anim Reprod Sci 101:241–251

    Article  CAS  PubMed  Google Scholar 

  • Braunschweig M, Jagannathan V, Gutzwiller A, Bee G (2012) Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS ONE 7(2):e30583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito LFC, Barth AD, Rawlings NC, Wilde RE, Crews DH, Mir PS, Kastelic JP (2007a) Effect of improved nutrition during calfhood on serum metabolic hormones, gonadotropins, and testosterone concentrations, and on testicular development in bulls. Domest Anim Endocrinol 33:460–469

    Article  CAS  PubMed  Google Scholar 

  • Brito LFC, Barth AD, Rawlings NC, Wilde RE, Crews DH, Mir PS, Kastelic JP (2007b) Circulating metabolic hormones during the peripubertal period and their association with testicular development in bulls. Reprod Domest Anim 42:502–508

    Article  CAS  PubMed  Google Scholar 

  • Brito LFC, Barth AD, Wilde RE, Kastelic JP (2012) Effect of growth rate from 6 to 16 months of age on sexual development and reproductive function in beef bulls. Theriogenology 77:1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Burns JL, Hassan AB (2001) Cell survival and proliferation are modified by insulin-like growth factor 2 between days 9 and 10 of mouse gestation. Development 128:3819–3830

    Article  CAS  PubMed  Google Scholar 

  • Burton MA, Lillycrop KA (2019) Nutritional modulation of the epigenome and its implication for future health. Proc Nutr Soc 78:305–312

    Article  PubMed  Google Scholar 

  • Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays 29:356–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A (2018) A decade of exploring the mammalian sperm epigenome: paternal epigenetic and transgenerational inheritance. Front Cell Dev Biol 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Corsi S, Iodice S, Shannon O, Siervo M, Mathers J, Bollati V, Byun H (2020) Mitochondrial DNA methylation is associated with Mediterranean diet adherence in a population of older adults with overweight and obesity. Proceedings of the Nutrition Society 79:E95

    Article  CAS  Google Scholar 

  • Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C and Reik W (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948

    Article  PubMed  CAS  Google Scholar 

  • Dance A, Thundathil J, Blondin P, Kastelic J (2016) Enhanced early-life nutrition of Holstein bulls increases sperm production potential without decreasing postpubertal semen quality. Theriogenology 86:687–694

    Article  PubMed  Google Scholar 

  • Dance A, Thundathil J, Wilde R, Blondin P, Kastelic J (2015) Enhanced early-life nutrition promotes hormone production and reproductive development in Holstein bulls. J Dairy Sci 98:987–998

    Article  CAS  PubMed  Google Scholar 

  • Dindot S, Kent K, Evers B, Loskutoff N, Womack J, Piedrahita J (2005) Conservation of genomic imprinting at the XIST, IGF2, and GTL2 loci in the bovine. Mamm Genome 15:966–974

    Article  CAS  Google Scholar 

  • Donkin I, Barres R (2018) Sperm epigenetics and influence of environmental factors. Mol Metab 14:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducummon C, Berger T (2006) Localization of the Rho GTPases and some Rho effector proteins in the sperm of several mammalian species. Zygote 14:249–257

    Article  CAS  PubMed  Google Scholar 

  • Dupont JM, Tost J, Jammes H, Gut IG (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Jiang J, Li B, Zhou Y, Freebern E, Vanraden PM, Cole JB, Liu GE, Ma L (2019) Genetic and epigenetic architecture of paternal origin contribute to gestation length in cattle. Commun Biol 14:2

    Google Scholar 

  • Fowden AL, Sferruzzi-Perri AN, Coan PM, Constancia M, Burton GJ (2009) Placental efficiency and adaptation: endocrine regulation. J Physiol 587:3459–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaysinskaya V, Miller B, Luca C, van der Heijden GW, Hansen KD, BortvinA, (2018) Transient reduction of DNA methylation at the onset of meiosis in male mice. Epigenetics Chromatin 11:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Gross N, Taylor T, Crenshaw T, Khatib H (2020) The intergenerational impacts of paternal diet on DNA methylation and offspring phenotypes in sheep. Front Genet 11:597943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu H, Gao J, Guo W, Zhou Y, Kong Q (2017) The expression of DNA methyltransferases3A is specifically downregulated in chorionic villi of early embryo growth arrest cases. Mol Med Rep 16:591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Gui YT, Tang AF, Lu LH, Gao X, Cai ZM (2007) Differential expression of VASA gene in ejaculated spermatozoa from normozoospermic men and patients with oligozoospermia. Asian J Androl 9:339–344

    Article  CAS  PubMed  Google Scholar 

  • Hinsch KD, Habermann B, Just I, Hinsch E, Pfisterer S, Schill WB, Aktories K (1993) ADP-Ribosylation of Rho proteins inhibits sperm motility. FEBS Lett 334

  • Hogarth CA, Evans E, Onken J, Kent T, Mitchell D, Petkovich M, Griswold MD (2015) CYP26 enzymes are necessary within the postnatal seminiferous epithelium for normal murine spermatogenesis. Biol Reprod 93:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4

  • Ishii T, Kohu K, Yamada S, Ishidoya S, Kanto S, Fuji H, Moriya T, Satake M, Arai Y (2007) Up-regulation of DNA-methyltransferase 3A expression is associated with hypomethylation of intron 25 in human testicular germ cell tumors. Tohoku J Exp Med 212:177–190

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Lin J, Dong H, Zheng X, Marjani SL, Duan J, Ouyang Z, Chen J, Tian XC (2018) DNA methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol Reprod 1:949–959

    Article  Google Scholar 

  • Johnson C, Jia Y, Wang C, Lue YH, Swerdloff RS, Zhang XS, Hu Z, Li YC, Liu YX, Hikim AP (2008) Role of caspase 2 in apoptotic signaling in primate and murine germ cells. Biol Reprod 79:806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson C, Dance A, Kovalchuk I, Kastelic J, Thundathil J (2019) Enhanced early-life nutrition upregulates cholesterol biosynthetic gene expression and Sertoli cell maturation in testes of pre-pubertal Holstein bulls. Sci Rep 9:6448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson C, Dance A, Kovalchuk I, Kastelic J, Thundathil J (2020) Enhanced pre-pubertal nutrition upregulates mitochondrial function in testes and sperm of post-pubertal Holstein bulls. Sci Rep 10:2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10:682–688

    Article  CAS  PubMed  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killian JK, Nolan CM, Wylie AA, Li T, Vu TH, Hoffman AR, Jirtle RL (2001) Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet 10:1721–1728

    Article  CAS  PubMed  Google Scholar 

  • Krueger F (2014) Trim galore. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. Accessed 21 July 2019

  • Kumar D, Salian SR, Kalthur G, Uppangala S, Kumari S, Kumar CS, Chandraguthi SG, Krishnamurthy H, Jain N, Kumar P, Adiga SK (2013) Semen abnormalities, sperm DNA damage and global hypermethylation in health workers occupationally exposed to ionizing radiation. PLoS ONE 8:e69927–e69927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert S, Blondin P, Vigneault C, Labrecque R, Dufort I, Sirard MA (2018) Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology 106:21–29

    Article  PubMed  Google Scholar 

  • Lappalainen T, Greally JM (2017) Associating cellular epigenetic models with human phenotypes. Nat Rev Genet 18:441–451

    Article  CAS  PubMed  Google Scholar 

  • Li MWM, Mruk DD, Cheng CY (2009) Mitogen-activated protein kinases in male reproductive function. Trends Mol Med 15:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louvi A, Accili D, Efstratiadis A (1997) Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Develop Biol 189:33–48

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Longo FM, Zhou H, Massa SM, Chen YH (2009) Signaling through Rho GTPase pathway as viable drug target. Curr Med Chem 16:1355–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lui WY, Lee WM, Cheng CY (2003) Rho GTPases and spermatogenesis. Biochimica et Biophysica Acta (BBA) - Mol Cell Res 1593:121–129

  • Mukai H (2003) The structure and function of PKN, a protein kinase having a catalytic domain homologous to that of PKC. J Biochem 133:17–27

    Article  CAS  PubMed  Google Scholar 

  • Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM (2007) Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 307:368–379

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Olszewska M, Barciszewska MZ, Fraczek M, Huleyuk N, Chernykh VB, Zastavna D, Barciszewski J, Kurpisz M (2017) Global methylation status of sperm DNA in carriers of chromosome structural aberrations. Asian J Androl 19:117–124

    CAS  PubMed  Google Scholar 

  • Ost A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, Pantano L, BoenischU IPM, Stoeckius M, Ruf M, Rajewsky N, Reuter G, Iovino N, Ribeiro C, Alenius M, Heyne S, Vavouri T, Pospisilik JA (2014) Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159:1352–1364

    Article  PubMed  CAS  Google Scholar 

  • Perrier JP, Kenny DA, Chaulot-Talmon A, Byrne CJ, Sellem E, Jouneau L, Aubert-Frambourg A, Schibler L, Jammes H, Lonergan P, Fair S, Kiefer H (2020) Accelerating onset of puberty through modification of early life nutrition induces modest but persistent changes in bull sperm DNA methylation profiles post-puberty. Front Genet 26:945

    Article  CAS  Google Scholar 

  • Perrier JP, Sellem E, Prezelin A, Gasselin M, Jouneau L, Perrier PF, JAl Adhami H, Weber M, Fritz S, Boichard D, Le Danvic C, Schibler L, Jammes H and Kiefer H, (2018) A multi-scale analysis of bull sperm methylome revealed both species peculiarities and conserved tissue-specific features. BMC Genom 19:404

    Article  CAS  Google Scholar 

  • Pitetti JL, Calvel P, Zimmermann C, Conne B, Papaioannou MD, Aubrey F, Cederroth CR, Urner F, Fumel B, Crausaz M, Docquier M, Herrera PL, Pralong F, Germond M, Guillou F, Jégou B, Nef S (2013) An essential role for insulin and IGF1 receptors in regulating sertoli cell proliferation, testis size, and FSH action in mice. Mol Endocrinol 27:814–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahiminia T, Yazd EF, Fesahat F, Moein MR, Mirjalili AM, Talebi AR (2018) Sperm chromatin and DNA integrity, methyltransferase mRNA levels, and global DNA methylation in oligoasthenoteratozoospermia. Clin Exp Reprod Med 45:17–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawlings N, Evans AC, Chandolia RK, Bagu ET (2008) Sexual maturation in the bull. Reprod Domest Anim 43:295–301

    Article  PubMed  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Roa-Espitia AL, Hernández-Rendón ER, Baltiérrez-Hoyos R, Muñoz-Gotera RJ, Cote-Vélez A, Jiménez I, González-Márquez H, Hernández-González EO (2016) Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation. Biol Open 5:1189–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronfani L, Bianchi ME (2004) Molecular mechanisms in male determination and germ cell differentiation. Cell Mol Life Sci 61:1907–1925

    Article  CAS  PubMed  Google Scholar 

  • Sette C, Barchi M, Bianchini A, Conti M, Rossi P, Geremia R (1999) Activation of the mitogen-activated protein kinase ERK1 during meiotic progression of mouse pachytene spermatocytes. J Biol Chem 274:33571–33579

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Kobayashi E, Akagi S, Nishino K, Kaneda M, Watanabe S (2017) Differentially methylated CpG sites in bull spermatozoa revealed by human DNA methylation arrays and bisulfite analysis. J Reprod Dev 63:279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Kobayashi E, Nishino K, Imai A, Adachi H, Hoshino Y, Iwao K, Akagi S, Kaneda M, Watanabe S (2019) Age-related changes in DNA methylation levels at CpG sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combined bisulfite restriction analysis. J Reprod Dev 65:305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Q, Pan F, Yang J, Fu Z, Lu Y, Wu X, Han X, Chen M, Lu C, **a Y, Wang X, Wu W (2018) Idiopathic male infertility is strongly associated with aberrant DNA methylation of imprinted loci in sperm: a case-control study. Clin Epigenetics 10:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Team RDC (2008) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing

  • Thundathil J, Dance A, Kastelic J (2016) Fertility management of bulls to improve beef cattle productivity. Theriogenology 86:397–405

    Article  PubMed  Google Scholar 

  • Tolias KF, Cantley LC, Carpenter CL (1995) Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 270:17656–17659

    Article  CAS  PubMed  Google Scholar 

  • Tomar A, Schlaepfer DD (2009) Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 21:676–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2:2265

    Article  CAS  PubMed  Google Scholar 

  • Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ (2016) Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 9:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wennmann DO, Schmitz J, Wehr MC, Krahn MP, Koschmal N, Gromnitza S, Schulze U, Weide T, Chekuri A, Skryabin BV, Gerke V, Pavenstädt H, Duning K, Kremerskothen J (2014) Evolutionary and molecular facts link the WWC protein family to Hippo signaling. Mol Biol Evol 31:1710–1723

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Sirard MA (2020) Parental effects on epigenetic programming in gametes and embryos of dairy cows. Front Genet 14:11

    Google Scholar 

  • **a W, Mruk DD, Lee WM, Cheng CY (2006) Differential interactions between transforming growth factor-beta3/TbetaR1, TAB1, and CD2AP disrupt blood-testis barrier and Sertoli-germ cell adhesion. J Biol Chem 281:16799–16813

    Article  CAS  PubMed  Google Scholar 

  • Zhang GM, Zhang TT, An SY, El-Samahy MA, Yang H, Wan YJ, Meng FX, **ao SH, Wang F, Lei ZH (2019) Expression of Hippo signaling pathway components in Hu sheep male reproductive tract and spermatozoa. Theriogenology 126:239–248

    Article  CAS  PubMed  Google Scholar 

  • Zheng QF, Xu B, Wang H, Ding L, Liu JY, Zhu LY, Qui H, Zhang L, Ni GY, Ye J, Gao SH, ** GH (2018) Epigenetic alterations contribute to promoter activity of imprinting gene IGF2. Biochimica et Biophysica Acta. Gene Regul Mech 1861:117–124

    CAS  Google Scholar 

Download references

Funding

This study received funding support from the Natural Sciences and Engineering Research Council of Canada (Discovery Grant # RGPIN-2020–04585 to JT).

Author information

Authors and Affiliations

Authors

Contributions

CJ performed the pyrosequencing experiment, participated in the RRBS experiments and data analysis and drafted the manuscript. HK and LJ performed the bioinformatics and statistical analyses of RRBS data. ACT constructed the RRBS libraries. HK, ES, AD, JK, JT and HJ participated in the conception of the study and editing of the manuscript.

Corresponding author

Correspondence to Chinju Johnson.

Ethics declarations

Ethics approval and consent to participate

This experiment was conducted in accordance with the guidelines of the Canadian Council on Animal Care and was reviewed and approved by the Lethbridge Research Centre Institutional Animal Care Committee.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, C., Kiefer, H., Chaulot-Talmon, A. et al. Prepubertal nutritional modulation in the bull and its impact on sperm DNA methylation. Cell Tissue Res 389, 587–601 (2022). https://doi.org/10.1007/s00441-022-03659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03659-0

Keywords

Navigation