Log in

Sustained neurochemical plasticity in central terminals of mouse DRG neurons following colitis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbadie C, Pasternak GW, Aicher SA (2001) Presynaptic localization of the carboxy-terminus epitopes of the mu opioid receptor splice variants MOR-1C and MOR-1D in the superficial laminae of the rat spinal cord. Neuroscience 106:833–842

    Article  CAS  PubMed  Google Scholar 

  • Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361:2066–2078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beyak MJ, Vanner S (2005) Inflammation-induced hyperexcitability of nociceptive gastrointestinal DRG neurones: the role of voltage-gated ion channels. Neurogastroenterol Motil 17:175–186

    Article  CAS  PubMed  Google Scholar 

  • Beyak MJ, Ramji N, Krol KM, Kawaja MD, Vanner SJ (2004) Two TTX-resistant Na+ currents in mouse colonic dorsal root ganglia neurons and their role in colitis-induced hyperexcitability. Am J Physiol Gastrointest Liver Physiol 287:G845–G855

    Article  CAS  PubMed  Google Scholar 

  • Bielefeldt K, Lamb K, Gebhart GF (2006) Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 291:G658–G665

    Article  CAS  PubMed  Google Scholar 

  • Brookes SJ, Spencer NJ, Costa M, Zagorodnyuk VP (2013) Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol 10:286–296

    Article  CAS  PubMed  Google Scholar 

  • Christianson JA, Bielefeldt K, Altier C, Cenac N, Davis BM, Gebhart GF, High KW, Kollarik M, Randich A, Undem B, Vergnolle N (2009) Development, plasticity and modulation of visceral afferents. Brain Res Rev 60:171–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coldwell JR, Phillis BD, Sutherland K, Howarth GS, Blackshaw LA (2007) Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J Physiol (Lond) 579:203–213

    Article  CAS  Google Scholar 

  • Dang K, Bielfeldt K, Lamb K, Gebhart GF (2005) Gastric ulcers evoke hyperexcitability and enhance P2X receptor function in rat gastric sensory neurons. J Neurophysiol 93:3112–3119

    Article  CAS  PubMed  Google Scholar 

  • Gibbs GF, Drummond PD, Finch PM, Phillips JK (2008) Unravelling the pathophysiology of complex regional pain syndrome: focus on sympathetically maintained pain. Clin Exp Pharmacol Physiol 35:717–724

    Article  CAS  PubMed  Google Scholar 

  • Harrington AM, Brierley SM, Isaacs N, Hughes PA, Castro J, Blackshaw LA (2012) Sprouting of colonic afferent central terminals and increased spinal mitogen-activated protein kinase expression in a mouse model of chronic visceral hypersensitivity. J Comp Neurol 520:2241–2255

    Article  CAS  PubMed  Google Scholar 

  • Holzer P, Holzer-Petsche U (1997) Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 73:219–263

    Article  CAS  PubMed  Google Scholar 

  • Hughes P, Brierly S, Blackshaw LA (2009) Post inflammatory modification of colonic afferent mechanosensitivity. Clin Exp Pharmacol Physiol 36:1034–1040

    Article  CAS  PubMed  Google Scholar 

  • Ibeakanma C, Vanner S (2010) TNFalpha is a key mediator of the pronociceptive effects of mucosal supernatant from human ulcerative colitis on colonic DRG neurons. Gut 59:612–621

    Article  CAS  PubMed  Google Scholar 

  • Ibeakanma C, Miranda-Morales M, Richards M, Bautista-Cruz F, Martin N, Hurlbut D, Vanner S (2009) Citrobacter rodentium colitis evokes post-infectious hyperexcitability of mouse nociceptive colonic dorsal root ganglion neurons. J Physiol (Lond) 587:3505–3521

    Article  CAS  Google Scholar 

  • Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621

    Article  CAS  PubMed  Google Scholar 

  • King DE, Macleod RJ, Vanner SJ (2009) Trinitrobenzenesulphonic acid colitis alters Na 1.8 channel expression in mouse dorsal root ganglia neurons. Neurogastroenterol Motil 21:880–e64

    Article  CAS  PubMed  Google Scholar 

  • Kyloh M, Nicholas S, Zagorodnyuk VP, Brookes SJ, Spencer NJ (2011) Identification of the visceral pain pathway activated by noxious colorectal distension in mice. Front Neurosci 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  • La JH, Gebhart GF (2011) Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons. Am J Physiol Gastrointest Liver Physiol 301:G165–G174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb K, Zhong F, Gebhart GF, Bielefeldt K (2006) Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am J Physiol Gastrointest Liver Physiol 290:G451–G457

    Article  CAS  PubMed  Google Scholar 

  • Lukewich MK, Lomax AE (2011) Altered adrenal chromaffin cell function during experimental colitis. Am J Physiol Gastrointest Liver Physiol 300:G654–G664

    Article  CAS  PubMed  Google Scholar 

  • Malykhina AP, Qin C, Foreman RD, Akbarali HI (2004) Colonic inflammation increases Na+ currents in bladder sensory neurons. Neuroreport 15:2601–2605

    Article  CAS  PubMed  Google Scholar 

  • Malykhina AP, Qin C, Greenwood-van Meerveld B, Foreman RD, Lupu F, Akbarali HI (2006) Hyperexcitability of convergent colon and bladder dorsal root ganglion neurons after colonic inflammation: mechanism for pelvic organ cross-talk. Neurogastroenterol Motil 18:936–948

    Article  CAS  PubMed  Google Scholar 

  • Mantyh PW, Hunt SP (2004) Setting the tone: superficial dorsal horn projection neurons regulate pain sensitivity. Trends Neurosci 27:582–584

    Article  CAS  PubMed  Google Scholar 

  • Mayer EA, Gebhart GF (1994) Basic and clinical aspects of visceral hyperalgesia. Gastroenterology 107:271–293

    CAS  PubMed  Google Scholar 

  • Miranda A, Nordstrom E, Mannem A, Smith C, Banerjee B, Sengupta JN (2007) The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience 148:1021–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moody SA, Miller V, Spanos A, Frankfurter A (1996) Developmental expression of a neuron-specific beta-tubulin in frog (Xenopus laevis): a marker for growing axons during the embryonic period. J Comp Neurol 364:219–230

    Article  CAS  PubMed  Google Scholar 

  • Motagally MA, Neshat S, Lomax AE (2009) Inhibition of sympathetic N-type voltage-gated Ca2+ current underlies the reduction in norepinephrine release during colitis. Am J Physiol Gastrointest Liver Physiol 296:G1077–G1084

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Malykhina AP, Akbarali HI, Foreman RD (2005) Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology 129:1967–1978

    Article  PubMed  Google Scholar 

  • Ramachandran R, Hyun E, Zhao L, Lapointe TK, Chapman K, Hirota CL, Ghosh S, McKemy DD, Vergnolle N, Beck PL, Altier C, Hollenberg MD (2013) TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci U S A 110:7476–7481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3:390–407

    Article  CAS  PubMed  Google Scholar 

  • Stewart T, Beyak MJ, Vanner S (2003) Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. J Physiol (Lond) 552:797–807

    Article  CAS  Google Scholar 

  • Traub RJ, Hutchcroft K, Gebhart GF (1999) The peptide content of colonic afferents decreases following colonic inflammation. Peptides 20:267–273

    Article  CAS  PubMed  Google Scholar 

  • Vera-Portocarrero LP, **e JY, Kowal J, Ossipov MH, King T, Porreca F (2006) Descending facilitation from the rostral ventromedial medulla maintains visceral pain in rats with experimental pancreatitis. Gastroenterology 130:2155–2164

    Article  PubMed  Google Scholar 

  • Wynn G, Ma B, Ruan HZ, Burnstock G (2004) Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol 287:G647–G657

    Article  CAS  PubMed  Google Scholar 

  • **a CM, Colomb DG Jr, Akbarali HI, Qiao LY (2011) Prolonged sympathetic innervation of sensory neurons in rat thoracolumbar dorsal root ganglia during chronic colitis. Neurogastroenterol Motil 23:801–e339

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technical support of Iva Kosatka and Margaret O’Reilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan E. Lomax.

Additional information

This work was supported by funding from the Canadian Institutes of Health Research (C.A., A.L., S.V.), the Crohn’s and Colitis Foundation of Canada (S.V., A.L.) and the Ontario Ministry of Research and Innovation (A.L.). T.L. holds a fellowship from Alberta Innovates Health Solutions and CIHR/CAG.

Contributions to this work were as follows: J.B., C.A., D.M., T.L., S.V. and A.L. designed the research study; J.B., J.X., D.M. and T.L. performed the experiments; J.B., C.A., D.M., T.L., S.V. and A.L. analysed the data; J.B., C.A., D.M., T.L., S.V. and A.L. wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, J.R., Xu, J., Moynes, D.M. et al. Sustained neurochemical plasticity in central terminals of mouse DRG neurons following colitis. Cell Tissue Res 356, 309–317 (2014). https://doi.org/10.1007/s00441-014-1832-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1832-x

Keywords

Navigation