Log in

A CLT for the characteristic polynomial of random Jacobi matrices, and the G\(\beta \)E

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We prove a central limit theorem for the real part of the logarithm of the characteristic polynomial of random Jacobi matrices. Our results cover the G\(\beta \)E models for \(\beta >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable—no new data generated.

References

  1. Arguin, L.P., Belius, D., Bourgade, P.: Maximum of the characteristic polynomial of random unitary matrices. Commun. Math. Phys. 349, 703–751 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. Berestycki, N., Webb, C., Wong, M.D.: Random Hermitian matrices and Gaussian multiplicative chaos. Probab. Theory Rel. Fields 172, 103–189 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgade, P., Mody, K.: Gaussian fluctuations of the determinant of Wigner matrices. Electron. J. Probab. 24, 96–28 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgade, P., Mody, K., Pain, M.: Optimal local law and central limit theorem for \(\beta \)-ensembles. Commun. Math. Phys. 390, 1017–1079 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charlier, C.: Asymptotics of Hankel determinants with a one-cut regular potential and Fisher-Hartwig singularities. Int. Math. Res. Not. 24, 7515–7576 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Claeys, T., Fahs, B., Lambert, G., Webb, C.: How much can the eigenvalues of a random matrix fluctuate? Duke Math. J. 170, 2085–2235 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chhaibi, R., Madaule, T., Najnudel, J.: On the maximum of the \(\text{ C }\beta \text{ E }\) field. Duke Math. J. 167, 2243–2345 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Chhaibi, R., Najnudel, J.: On the circle, \(GMC^\gamma =\lim _{\leftarrow } C\beta E_n\) for \(\gamma =\sqrt{2/\beta }\). ar**v:1904.00578 (2018)

  10. Delannay, R., Le Caër, G.: Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble. Phys. Rev. E. 62, 1526–1536 (2000)

    Article  MathSciNet  Google Scholar 

  11. Diaconis, P., Shashahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31, 49–62 (1994)

    Article  MathSciNet  Google Scholar 

  12. Diaconis, P., Evans, S.N.: Linear functionals of eigenvalues of random matrices. Trans. AMS 353, 2615–2633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dumitriu, I., Edelman, A.: Matrix models for \(\beta \) ensembles. J. Math. Phys. 43, 5830–5847 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dumitriu, I., Edelman, A.: Global spectrum fluctuations for the \(\beta \)-Hermite and \(\beta \)-Laguerre ensembles via matrix models. J. Math. Phys. 47, 063302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fyodorov, Y.V., Hiary, G.A., Keating, J.P.: Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta function. Phys. Rev. Lett. 108, 170601 (2012)

    Article  Google Scholar 

  16. Fyodorov, Y.V., Khoruzhenko, B.A., Simm, N.J.: Fractional Brownian motion with Hurst index \(H=0\) and the Gaussian unitary ensemble. Ann. Probab. 44, 2980–3031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goodman, N.R.: Distribution of the determinant of a complex Wishart distributed matrix. Ann. Stat. 34, 178–180 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Academic Press, New York (1980)

    MATH  Google Scholar 

  19. Hughes, C.P., Keating, J.P., O’Connell, N.: On the characteristic polynomial of a random unitary matrix. Commun. Math. Phys. 220, 429–451 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnstone, I.M., Klochkov, Y., Onatski, A., Pavlyshyn, D.: An edge CLT for the log determinant of Gaussian ensembles. ar**v:2011.13723 (2020)

  21. Krasovsky, I.V.: Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant. Duke Math. J. 139, 581–619 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keating, J.P., Snaith, N.C.: Random matrix theory and \(\zeta (1/2+it)\). Commun. Math. Phys. 214, 57–89 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lambert, G.: Mesoscopic central limit theorem for the circular \(\beta \)-ensemble and applications. Electron. J. Probab. 26, 1–33 (2021)

    Article  MathSciNet  Google Scholar 

  24. Lambert, G., Paquette, E.: Strong approximation of Gaussian beta-ensemble characteristic polynomials: the hyperbolic regime. ar**v:2001.09042 (2020)

  25. Lambert, G., Paquette, E.: Strong approximation of Gaussian \(\beta \)-ensemble characteristic polynomials: the edge regime and the stochastic Airy function. ar**v:2009.05003 (2020)

  26. Mehta, M.L., Normand, J.-M.: Probability density of the determinant of random Hermitian matrices. J. Phys. A.: Math. Gen. 31, 5377–5391 (1998)

    Article  MATH  Google Scholar 

  27. Nikula, M., Saksman, E., Webb, C.: Multiplicative chaos and the characteristic polynomial of the CUE: the \(L^1\)-phase. Trans. AMS 373, 3905–3965 (2020)

    Article  MATH  Google Scholar 

  28. Paquette, E., Zeitouni, O.: The maximum of the CUE field. Int. Math. Res. Not. 2018, 5028–5119 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Petrov, V.V.: Sums of Independent Random Variables. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  30. Popescu, I.: General tridiagonal random matrix models, limiting distributions and fluctuations. Prob. Theory Rel. Fields 144, 179–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rogozin, B.A.: On the increase of dispersion of sums of independent random variables. Theor. Probab. Appl. 6, 97–99 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nguyen, H.H., Vu, V.: Random matrices: law of the determinant. Ann. Probab. 42, 146–167 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Tao, T., Vu, V.: A central limit theorem for the determinant of a Wigner matrix. Adv. Math. 231, 74–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Webb, C.: The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos– the \(L^2\)-phase. Electron. J. Probab. 20 (2015)

  35. Wieand, K.: Eigenvalue distributions of random unitary matrices. Probab. Theory. Relat. Fields 123, 202–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for a careful reading of the manuscript and for their corrections and suggestions. This work was supported by funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (Grant Agreement Number 692452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Zeitouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: An anti-concentration inequality

Appendix A: An anti-concentration inequality

The Lévy anti-concentration function \(Q_\mu (\cdot )\) of a probability measure \(\mu \in {\mathcal {P}}({\mathbb {R}})\) is defined as

$$\begin{aligned} Q_\mu (\varepsilon ) = \sup _{ x \in {\mathbb {R}}} \mu \big ([x-\varepsilon , x+\varepsilon ]\big ), \qquad \varepsilon >0. \end{aligned}$$
(A.1)

For a random variable \(X\sim \mu \), we often write \(Q_X\) for \(Q_\mu \).

Lemma A.1

For \(M\ge 1\), set

$$\begin{aligned} {\mathcal {C}}_M=\left\{ \mu \in {\mathcal {P}}({\mathbb {R}}): \int x d\mu =0, \quad \int x^2 d\mu =1, \quad \int |x|^3 d\mu \le M\right\} . \end{aligned}$$
(A.2)

Then for any \(\varepsilon \in (0,1/4)\) there exists \(\delta =\delta (M,\varepsilon )>0\) such that for all \(\mu \in {\mathcal {C}}_M\),

$$\begin{aligned} Q_\mu (\varepsilon ) \le 1-\delta . \end{aligned}$$
(A.3)

Proof

Let \(\varepsilon >0\), and assume by contradiction that there exists a sequence \(\mu _n \in {\mathcal {C}}_M\) such that \( Q_{\mu _n}(\varepsilon ) \underset{n\rightarrow \infty }{\longrightarrow }\ 1.\) As \({\mathcal {C}}_M\) is a compact set for the weak convergence, there exist a sequence \(n_k\) and \(\mu \in {\mathcal {P}}({\mathbb {R}})\) such that \( \mu _{n_k} \underset{k\rightarrow \infty }{\leadsto }\mu .\) Since \(\int |x|^3 d\mu _{n_k} \le M\), we deduce by Fatou’s Lemma that \(\mu \in {\mathcal {C}}_M\). Observe that as \(Q_{\mu _n}(\varepsilon ) \rightarrow 1\) when \(n\rightarrow \infty \), we obtain using Markov’s inequality that for n large enough,

$$\begin{aligned} Q_{\mu _n}(\varepsilon ) = \sup _{|x| \le 2M+\varepsilon }\mu _n\big ( [x-\varepsilon ,x+\varepsilon ]\big ). \end{aligned}$$

Now, let \(\phi _\varepsilon \) be a non-negative Lipschitz function such that \(\phi _{\varepsilon } =1\) on \([-\varepsilon ,\varepsilon ]\) and \(\phi _\varepsilon =0\) on \([-2\varepsilon ,2\varepsilon ]^c\), and define for any probability measure \(\mu \),

$$\begin{aligned} \tilde{Q}_{\mu }(\varepsilon ) = \sup _{|x| \le 2M+\varepsilon } \int \phi _\varepsilon (x-y) d\mu . \end{aligned}$$

By continuity, we deduce that for any k there exists \(|x_k|\le 2\,M +\varepsilon \) such that

$$\begin{aligned} \tilde{Q}_{\mu _{n_k}}(\varepsilon ) = \int \phi _\varepsilon (x_k-y) d\mu _{n_k}. \end{aligned}$$

Since \( Q_{\mu _{n_k}}(\varepsilon )\le \tilde{Q}_{\mu _{n_k}}(\varepsilon )\), we get that \( \int \phi _\varepsilon (x_k-y) d\mu _{n_k} \underset{k\rightarrow \infty }{\longrightarrow }\ 1.\) At the price of taking another sub-sequence we can assume that \(x_k\) converges to some \(x \in {\mathbb {R}}\). We then obtain that \( \int \phi _\varepsilon (x-y) d\mu = 1,\) which yields that \(\mu \big ([x-2\varepsilon ,x+2\varepsilon ]\big ) =1\). Since \(\textrm{Var}(\mu ) =1\) and \((4\varepsilon )^2 <1\), we get a contradiction. \(\square \)

Combining Lemma A.1 with the Kolmogorov-Rogozin inequality [31], we get the following anti-concentration inequality for sums of independent random variables.

Lemma A.2

Assume that \(X_1,X_2,\ldots ,X_m\) are independent centered random variables such that for some \(M>0\), \({\mathbb {E}}|X_i|^3 \le M ({\mathbb {E}}X_i^2)^{3/2}\) for \(i=1,\ldots ,m\). Let \(S = X_1+X_2+\ldots +X_m\). Then there is a constant \(C=C(M)\) so that for any \(t \ge \max _i \sqrt{{\mathbb {E}}(X_i^2)}/8\),

$$\begin{aligned} Q_S(t) \le \frac{Ct}{\sqrt{ \sum _{i=1}^m {\mathbb {E}}X_i^2}}. \end{aligned}$$

Proof

Note that the statement and its assumptions are scale-invariant, so we may and will assume that \(\max _{i=1}^m {\mathbb {E}}X_i^2=1\). By the Kolmogorov-Rogozin inequality [31], we have that for any constants \(s_i\le t\),

$$\begin{aligned} Q_S(t) \le \frac{Ct}{\sqrt{\sum _{i=1}^m s_i^2 (1-Q_{X_i}(s_i))}}. \end{aligned}$$

Let \(s_i =\sqrt{{\mathbb {E}}(X_i^2)}/8\), \(i=1,\ldots ,m\). By Lemma A.1, we have that \(Q_{X_i}(s_i)\le 1-\delta \), where \(\delta >0\) only depends on M. This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augeri, F., Butez, R. & Zeitouni, O. A CLT for the characteristic polynomial of random Jacobi matrices, and the G\(\beta \)E. Probab. Theory Relat. Fields 186, 1–89 (2023). https://doi.org/10.1007/s00440-023-01194-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-023-01194-9

Mathematics Subject Classification

Navigation