Log in

Unsteady squeezing flow of a magnetized dissipative non-Newtonian nanofluid with radiative heat transfer and Fourier-type boundary conditions: numerical study

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Improved thermal management in high-temperature tribological systems requires novel developments in lubricants. Motivated by combining nanoparticle and magnetorheological plastomer features, this research paper deals with the analysis of the high-temperature magnetohydrodynamic squeeze flow of a Casson nanofluid between parallel disks with the Fourier-type boundary conditions including radiation. Rosseland’s diffusion flux and the Buongiorno nanoscale model are used. Suction and injection effects at the disks are also considered as is viscous heating. Robin (Fourier) boundary conditions are included, and the Buongiorno nanoscale model is used which enables the simulation of nanoparticle mass diffusion, Brownian motion and thermophoresis. The emerging nonlinear boundary value problem is solved with the bvp4c routine in MATLAB routine with appropriate boundary conditions at the disks. The effects of squeeze number, Hartmann number, Brownian motion parameter, Prandtl number, Eckert number, thermophoresis parameter, Casson viscoplastic rheological parameter and thermal radiation parameter for both disk suction and injection cases and also with equivalent and different Biot numbers at the disks are presented graphically. MATLAB solutions are validated with earlier published results. Drag force increases with greater magnetic field strength. Increasing squeezing parameter substantially modifies the velocity distribution, causing a deceleration near the disk surfaces but an acceleration further from the disks. Elevation in Prandtl number and Eckert number results in a significant enhancement in temperature but a strong depletion in nanoparticle concentration for both equal and unequal Biot numbers at the disk surfaces. Nanoparticle concentration is depleted at the disk surfaces with increasing Brownian motion parameter values. With an increase in the Casson viscoplastic parameter, temperature decreases, i.e., cooling is induced, whereas nanoparticle concentration increases. The simulations show that significant temperature elevation is produced with increasing Brownian diffusion, viscous dissipation and radiative flux effects and that combining nanoparticles and viscoplastic effects offers a good thermal management mechanism in squeezing lubrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A\) :

Suction/blowing parameter

\(B\) :

Strength of magnetic field

\(B_{0}\) :

Strength of magnetic field

\(Cfr\) :

Skin friction coefficient

\({\text{Bi}}_{1} ,\,\,{\text{Bi}}_{2}\) :

Biot number

\(D_{T}\) :

Thermophoretic diffusion coefficient

\(D_{B}\) :

Brownian motion coefficient

\({\text{Le}}\) :

Lewis number

\(a,\,\,H\) :

Positive constants

\(k\) :

Thermal conductivity

\(S\) :

Squeeze number

\({\text{Nt}}\) :

Thermophoresis parameter

\({\text{Nb}}\) :

Brownian motion parameter

\({\text{Nur}}\) :

Nusselt number

\({\text{Shr}}\) :

Sherwood number

\(h\left( t \right)\) :

Distance between the two disks

\({\text{Nu}}\) :

Nusselt number

\(\Pr\) :

Prandtl number

\(P\) :

Pressure

\(r/z\) :

Space coordinate

\(T\) :

Temperature

\(C\) :

Concentration

\(C_{h}\) :

Concentration at the upper disk

\(C_{w}\) :

Concentration at the lower disk

\(u,w\) :

Velocity components

\(w_{0}\) :

Suction/blowing velocity

\(T_{h}\) :

Temperature at the upper disk

\(T_{w}\) :

Temperature at the lower disk

\(T_{m}\) :

Mean fluid temperature

\(M\) :

Hartmann number

\({\text{Re}}_{r}\) :

Reynolds number

\(C_{p}\) :

Specific heat

\(f\) :

Dimensionless stream function

\(q_{w}\) :

Surface heat flux

\(\eta\) :

Similarity variable

\(\tau\) :

Heat capacity

\(\alpha\) :

Thermal diffusivity

\(\mu\) :

Dynamic viscosity

\(\sigma\) :

Electric conductivity

\(\beta\) :

Casson non-Newtonian parameter

\(\rho\) :

Density

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

\(\upsilon\) :

Kinematic viscosity

References

  1. Çelik, İ, Öztürk, H.K.: Heat transfer and velocity in the squeezing flow between two parallel disks by Gegenbauer wavelet collocation method. Arch. Appl. Mech. 91, 443–461 (2021)

    Article  Google Scholar 

  2. Kang, X., et al.: Auxiliary bearing squeeze film dampers for magnetic bearing supported rotors. Tribol. Int. 146, 106181 (2020)

    Article  Google Scholar 

  3. McIClark, H.: The influence of the squeeze film in slurry erosion. Wear 256, 918–926 (2004)

    Article  Google Scholar 

  4. Zueco, J., Anwar Bég, O.: Network numerical analysis of hydromagnetic squeeze film flow dynamics between two parallel rotating disks with induced magnetic field effects. Tribol. Int. 43, 532–543 (2010)

    Article  Google Scholar 

  5. Naduvinamani, N.B., et al.: Squeeze film lubrication between circular stepped plates: Rabinowitsch fluid model. Tribol. Int. 73, 78–82 (2014)

    Article  Google Scholar 

  6. Bhat, M.V., Deberi, G.M.: Squeeze film behaviour in porous annular discs lubricated with magnetic fluid. Wear 151, 123–128 (1991)

    Article  Google Scholar 

  7. Lin, M.S., et al.: Numerical and experimental study on the influence of material characteristics on the levitation performance of squeeze-film air bearing. Tribol. Int. 126, 307–316 (2018)

    Article  Google Scholar 

  8. Walters, K.: The importance and measurement of lubricant rheology. Tribol. Series 38, 487–499 (2000)

    Article  Google Scholar 

  9. Ohno, N., Hirano, F.: High pressure rheology analysis of traction oils based on free volume measurements. Lubr. Eng. 57, 16–22 (2001)

    Google Scholar 

  10. Hayat, T., Nazar, H., Imtiaz, M., Alsaedi, A., Ayub, M.: Axisymmetric squeezing flow of third grade fluid in presence of convective conditions. Chin. J. Phys. 55, 738–754 (2017)

    Article  Google Scholar 

  11. Muravleva, L.: Axisymmetric squeeze flow of a viscoplastic Bingham fluid. J. Non-Newton. Fluid Mech. 249, 97–120 (2017)

    Article  MathSciNet  Google Scholar 

  12. Xu, Y., et al.: Squeeze flow behaviors of magnetorheological plastomers under constant volume. J. Rheol. 58, 659 (2014)

    Article  Google Scholar 

  13. Phan-Thien, N., Walsh, W.: Squeeze-film flow of an Oldroyd-B fluid: Similarity solution and limiting Weissenberg number. ZAMP 35, 747–759 (1984)

    MATH  Google Scholar 

  14. Muravlev, L.: Axisymmetric squeeze flow of a Casson medium. J. Non-Newton. Fluid Mech. 267, 35–50 (2019)

    Article  MathSciNet  Google Scholar 

  15. Shamshuddin, M., Mishra, S.R., Kadir, A., Anwar Bég, O.: Unsteady chemo-tribological squeezing flow of magnetized bioconvection lubricants: numerical study. J. Nanofluids 8, 407–419 (2019)

    Article  Google Scholar 

  16. Kefayati, G.H.R.: FDLBM simulation of entropy generation due to natural convection in an enclosure filled with non-Newtonian nanofluid. Powder Technol. 273, 176–190 (2015)

    Article  Google Scholar 

  17. Aranda, J. A.: Radiative heat transfer analysis of railroad bearings for wayside thermal detector optimization. MSc Thesis, University of Texas Rio Grande Valley, December (2018)

  18. Fischer, F.D., Werner, E., Knothe, K.: The surface temperature of a half-plane subjected to rolling/sliding contact with convection. Trans. ASME J. Tribol. 122, 864 (2000)

    Article  Google Scholar 

  19. Winer, W.O., Bair, S., Gecim, B.: Thermal resistance of a tapered roller bearing. Am. Soc. Lubr. Eng. 45, 8–10 (1985)

    Google Scholar 

  20. Jeager, J.C.: Moving sources of heat and the temperature at sliding contacts. Proc. R. Soc. 76, 203–224 (1942)

    Google Scholar 

  21. Xu, B., Chia, C.W., Zhang, Q., Toh, Y.T., An, C.: Thermal analysis of heat-assisted magnetic recording optical head with laser diode on slider. Jpn. J. Appl. Phys. 50(9S1), 5M-9M (2011)

    Article  Google Scholar 

  22. Dahl, J.B., Bogy, D.B.: Static and dynamic slider air-bearing behavior in heat-assisted magnetic recording under thermal flying height control and laser system-induced protrusion. Tribol. Lett. 54(1), 35–50 (2014)

    Article  Google Scholar 

  23. Wu, H., **ong, S., Canchi, S., Schreck, E., Bogy, D.: Nanoscale heat transfer in the head-disk interface for heat assisted magnetic recording. Appl. Phys. Lett. 108(9), 093106 (2016)

    Article  Google Scholar 

  24. Zhou, W.D., Liu, B., Yu, S.K., Hua, W., Wong, C.H.: A generalized heat transfer model for thin film bearings at head-disk interface. Appl. Phys. Lett. 92, 043109 (2008)

    Article  Google Scholar 

  25. Mohyud-Din, S.T., Khan, S.I.: Nonlinear radiation effects on squeezing flow of a Casson fluid between parallel disks. Aerosp. Sci. Technol. 48, 186–192 (2016)

    Article  Google Scholar 

  26. Khan, S.I., Khan, U., Ahmed, N., Mohyud-Din, S.T.: Thermal radiation effects on squeezing flow Casson fluid between parallel disks. Commun. Numer. Anal. 2, 92–107 (2016)

    Article  MathSciNet  Google Scholar 

  27. Hayat, T., Jabeen, S., Shafiq, A., Alsaedi, A.: Radiative squeezing flow of second grade fluid with convective boundary conditions. PLoS One 11(e0152555), 1–22 (2016)

    Google Scholar 

  28. Kefayati, G.H.R.: Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int. J. Heat Mass Transf. 92, 1066–1089 (2016)

    Article  Google Scholar 

  29. Bilal, M., Urva, Y.: Analysis of non-Newtonian fluid flow over fine rotating thin needle for variable viscosity and activation energy. Arch. Appl. Mech. 91, 1079–1095 (2021)

    Article  Google Scholar 

  30. Subramanian, K.R.V., Rao, T.N., Balakrishnan, A.: Nanofluids and Their Engineering Applications. CRC Press, Florida (2021)

    Google Scholar 

  31. Buongiorno, J.: Convective transport in nanofluids. ASME J Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  32. Hu, Y., et al.: Head flying characteristics in heat assisted magnetic recording considering various nanoscale heat transfer models. J. Appl. Phys. 123, 034303 (2018)

    Article  Google Scholar 

  33. Hashmi, M.M., Hayat, T., Alsaedi, A.: On the analytical solutions for squeezing flow of nanofluid between parallel disks. Nonlinear Anal. Model. Control 17, 418–430 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kefayati, G.H.R.: FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int. J. Therm. Sci. 95, 29–46 (2015)

    Article  Google Scholar 

  35. Hamid, M., Usman, M., Ul Haq, R., Tian, Z.: A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels. Arch. Appl. Mech. 91, 1907–1924 (2021)

    Article  Google Scholar 

  36. Akram, S., Razia, A., Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 90, 1583–1603 (2020)

    Article  Google Scholar 

  37. Aly, A.M., Mohamed, E.M.: Numerical simulations of solid particles dispersion during double-diffusive convection of a nanofluid in a cavity with a wavy source. Arch. Appl. Mech. 91, 2089–2108 (2021)

    Article  Google Scholar 

  38. Kefayati, G.H.R.: Natural convection of ferrofluid in a linearly heated cavity utilizing LBM. J. Mol. Liq. 191, 1–9 (2014)

    Article  Google Scholar 

  39. Kefayati, G.H.R.: Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity. Powder Technol. 299, 127–149 (2016)

    Article  Google Scholar 

  40. Kefayati, G.H.R.: FDLBM simulation of magnetic field effect on mixed convection in a two sided lid-driven cavity filled with non-Newtonian nanofluid. Powder Technol. 280, 135–153 (2015)

    Article  Google Scholar 

  41. Soomro, F.A., Ul Haq, R., Hamid, M.: Brownian motion and thermophoretic effects on non-Newtonian nanofluid flow via Crank-Nicolson scheme. Arch. Appl. Mech. 91, 3303–3313 (2021)

    Article  Google Scholar 

  42. Rikitu, B.H., Makinde, O.D., Enyadene, L.G.: Unsteady mixed convection of a radiating and reacting nanofluid with variable properties in a porous medium microchannel. Arch. Appl. Mech. (2021). https://doi.org/10.1007/s00419-021-02043-8

    Article  Google Scholar 

  43. Afshar, S.R., Mishra, S.R., Dogonchi, A.S., Karimi, N., Chamkha, A.J., Abulkhair, H.: Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink. J. Taiwan Inst. Chem. Eng. 128, 98–113 (2021)

    Article  Google Scholar 

  44. Dogonchia, A.S., Mishra, S.R., Karimic, N., Chamkhad, A.J., Alhumade, H.: Interaction of fusion temperature on the magnetic free convection of nano-encapsulated phase change materials within two rectangular fins equipped porous enclosure. J. Taiwan Inst. Chem. Eng. (2021). https://doi.org/10.1016/j.jtice.2021.03.010

    Article  Google Scholar 

  45. Chamkha, A.J., Dogonchi, A.S., Ganji, D.D.: Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM. Appl. Sci. (2018). https://doi.org/10.3390/app8122396

    Article  Google Scholar 

  46. Dogonchia, A.S., Seyyedi, S.M., Hashemi-Tilehnoee, M., Chamkhac, A.J., Ganjie, D.D.: Investigation of natural convection of magnetic nanofluid in an enclosure with a porous medium considering Brownian motion. Case Stud. Therm. Eng. 14, 100502 (2019)

    Article  Google Scholar 

  47. Shaw, S., Dogonchi, A.S., Nayak, M.K., Makinde, O.D.: Impact of entropy generation and nonlinear thermal radiation on Darcy-Forchheimer flow of MnFe2O4-Casson/water nanofluid due to a rotating disk: application to brain dynamics. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04453-2

    Article  Google Scholar 

  48. Seyyedi, S.M., Dogonchi, A.S., Ganji, D.D., Hashemi-Tilehnoee, M.: Entropy generation in a nanofluid-filled semi-annulus cavity by considering the shape of nanoparticles. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08130-x

    Article  Google Scholar 

  49. Saidi, M.H., Tamim, H.: Heat transfer and pressure drop characteristics, of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion. Adv. Powder Technol. 27, 565–74 (2016)

    Article  Google Scholar 

  50. Ahmed, N., Khan, U., Mohyud-Din, S.T.: Influence of shape factor on flow of magneto-nanofluid squeezed between parallel disks. Alex. Eng. J. 57, 1893–1903 (2018)

    Article  Google Scholar 

  51. Das, K., Jana, S., Acharya, N.: Slip effects on squeezing flow of nanofluid between two parallel disks. Int. J. Appl. Mech. Eng. 21, 5–20 (2016)

    Article  Google Scholar 

  52. Anwar Bég, O., Sohail, A., Bég, T.A., Kadir, A.: B-spline collocation simulation of nonlinear transient magnetic nano-bio-tribological squeeze film flow. J. Mech. Med. Biol. 18, 1850007.1-1850007.20 (2018)

    Google Scholar 

  53. Sobamowo, M.G., Akinshilo, A.T.: On the analysis of squeezing flow of nanofluid between two parallel plates under the influence of magnetic field. Alex. Eng. J. (2017). https://doi.org/10.1016/j.aej.2017.07.001

    Article  Google Scholar 

  54. Ullah, I., Waqas, M., Hayat, T., Alsaedi, A., Ijaz Khan, M.: Thermally radiated squeezed flow of magneto-nanofluid between two parallel disks with chemical reaction. J. Therm. Anal. Calorim. 135, 1021–1030 (2019)

    Article  Google Scholar 

  55. Ahmed, N.U., Khan, S.I., **ao-Jun, Y., Zaidi, Z.A., Mohyud-Din, S.T.: Magnetohydrodynamic (MHD) squeezing flow of a Casson fluid between parallel disks. Int. J. Phys. Sci. 8, 1788–1799 (2013)

    Google Scholar 

  56. Khan, U., Khan, S.I., Ahmed, N., Bano, S., Mohyud-Din, S.T.: Heat transfer analysis for squeezing flow of a Casson fluid between parallel plates. Ain Shams Eng. J. 7, 497–504 (2016)

    Article  Google Scholar 

  57. Janardhana Reddy, G., Bhaskerreddy, K., Umavathi, J.C., Mikhail Sheremet, A.: Heat flow visualization for unsteady Casson fluid past a vertical slender hollow cylinder. Therm. Sci. Eng. Prog. 5, 172–181 (2018)

    Article  Google Scholar 

  58. Prasad, V.R., Subba Rao, A., Bhaskar Reddy, N., Vasu, B., Anwar Bég, O.: Modelling laminar transport phenomena in a Casson rheological fluid from a horizontal circular cylinder with partial slip. Proc. IMechE Part E J. Process Mech. Eng. 227(4), 309–326 (2013)

    Article  Google Scholar 

  59. Umavathi, J.C., Anwar Bég, O.: Numerical study of double-diffusive dissipative reactive convective flow in an open vertical duct containing a non-Darcy porous medium with Robin boundary conditions. J. Eng. Math. (2019). https://doi.org/10.1007/s10665-019-10022-w

    Article  MathSciNet  MATH  Google Scholar 

  60. Umavathi, J.C., Anwar Bég, O.: Mathematical modelling of triple diffusion in natural convection flow in a vertical duct with Robin boundary conditions, viscous heating and chemical reaction effects. J. Eng. Thermophys. 29, 1–26 (2020)

    Article  Google Scholar 

  61. Kierzenka, J., Shampine, L.F.: A BVP solver based on residual control and the Matlab PSE. ACM Trans. Math. Softw. (TOMS) 27, 299–316 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Hayat, T., Yousaf, A., Mustafa, M., Obaidat, S.: MHD squeezing flow of second grade fluid between two parallel disks. Int. J. Numer. Methods Fluids 69, 399–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Hashmi, M.M., Hayat, T., Alsaedi, A.: On the analytic solutions for squeezing flow of Nanofluids between parallel disks. Nonlinear Anal. Model. Control 17, 418–430 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Abdel-Rahman, G.M.: Studying effect of MHD on thin films of a micropolar fluid. Phys. B 404, 3859–3866 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Umavathi.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The rheological equation of the Casson fluid is defined (following Mohyud-Din and Khan [25] and Khan et al. [26]) as follows:

$$ \tau_{ij} \,\, = \,\,\left[ {\mu_{B} \,\, + \,\,\left( {\frac{{p_{y} }}{2\pi }} \right)^{1/n} } \right]^{n} \,\,2\,\,e_{ij} $$
(A1)

where \(\mu_{B}\) is the dynamic viscosity of the non-Newtonian fluid, \(p_{y}\) is the yield stress of the fluid and \(\pi\) is the product of the component of deformation rate with itself, i.e., \(\pi \, = \,e_{ij} \,e_{ij}\) (self-product of component of deformation rate with itself) where \(e_{ij}\) is the \(\left( {i,j} \right)^{th}\) component of the deformation rate. For n < 1, the fluid is pseudoplastic (shear-thinning); for n > 1 it is dilatant (shear-thickening). Further:

$$ \tau_{ij} \,\, = \,\,\left\{ \begin{gathered} 2\,e_{ij} \,\,\left[ {\frac{{p_{y} }}{{\sqrt {2\pi } }}\,\, + \,\,\mu_{B} } \right]\,\,\,\pi \,\, > \,\,\pi_{c} \, \hfill \\ 2\,e_{ij} \,\,\left[ {\frac{{p_{y} }}{{\sqrt {2\pi_{c} } }}\,\, + \,\,\mu_{B} } \right]\,\,\pi \,\, < \,\,\pi_{c} \hfill \\ \end{gathered} \right\}\,\, $$
(A2)

Here, \(\pi_{c}\) is the critical value of the said self-product. If shear stress is less than the yield stress applied to the fluid, the fluid acts like a solid, whereas if shear stress exceeds the yield stress, motion is initiated. Examples of Casson fluid are jelly, foodstuffs, tomato sauce, gels, honey, certain polymers, soup, blood under certain shear rates, etc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umavathi, J.C., Vajravelu, K., Bég, O.A. et al. Unsteady squeezing flow of a magnetized dissipative non-Newtonian nanofluid with radiative heat transfer and Fourier-type boundary conditions: numerical study. Arch Appl Mech 92, 2695–2711 (2022). https://doi.org/10.1007/s00419-022-02211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02211-4

Keywords

Navigation