Log in

A porous layer of negative value of Poisson’s ratio under a flat-ended and rigid cylinder indenter

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Materials whose Poisson’s ratio is negative (e.g., so-called auxetic materials) have a number of unusual mechanical and functional properties. This paper solves an orthotropic and elastic layer under a rigid cylinder indenter. The intensity factor of the stress field is adopted to characterize the concentration of the stresses at the edge of the indenter. Closed form solutions can be obtained if the diameter of the indenter is considerably small than the thickness of the elastic layer. Otherwise, the field intensity factors can be found numerically based on the dual integral equation technique. The effects of the layer thickness and Poisson’s ratio of the material on stress concentration at the indenter tip are discussed. The results show that materials with negative Poisson’s ratio can substantially reduce the stress concentration at the edge of the indenter and increase the energy absorbing. This research is helpful for understanding the possible failure behavior and to optimize the mechanical properties of the materials (i.e., Poisson’s ratio and elastic modulus) in order to achieve a maximum indentation resistance for auxetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)

    Article  Google Scholar 

  2. Evans, K.E., Nkansah, M.A., Hutchinson, I.J., Rogers, S.C.: Molecular network design. Nature 353, 124 (1991)

    Article  Google Scholar 

  3. Elipe, J.C.A., Lantada, A.D.: Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater. Struct. 21, 105004 (2012)

    Article  Google Scholar 

  4. Li, S., Hassanin, H., Attallah, H.M., Adkins, N.J., Essa, K.: The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater. 105, 75–83 (2016)

    Article  Google Scholar 

  5. Schwerdtfeger, J., Heinl, P., Singer, R.F., Körner, C.: Auxetic cellular structures through selective electron-beam melting. Phys. Status Solidi B. 247, 269–272 (2010)

    Article  Google Scholar 

  6. Wang, K., Chang, Y.H., Chen, Y., Zhang, C., Wang, B.: Designable dual-material auxetic metamaterials using three-dimensional printing. Mater. Des. 67, 159–164 (2015)

    Article  Google Scholar 

  7. Meena, K., Singamneni, S.: A new auxetic structure with significantly reduced stress concentration effects. Mater. Des. 173, 107779 (2019)

    Article  Google Scholar 

  8. Cabras, L., Brun, M.: Auxetic two-dimensional lattices with Poisson’s ratio arbitrarily close to −1. Proc. R. Soc. A 470, 20140538 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choi, J.B., Lakes, R.S.: Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis. Int. J. Fract. 80, 73–83 (1996)

    Article  Google Scholar 

  10. Lim, T.C.: Auxetic Materials and Structures, Springer Singapore Heidelberg New York Dordrecht London, 2015, ISSN 1612–1317

  11. Bezazi, A., Scarpa, F.: Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading. Int. J. Fatigue 29, 922–930 (2007)

    Article  Google Scholar 

  12. Hu, J.S., Wang, B.L.: Enhanced fatigue performance of auxetic honeycomb/substrate structures under thermal cycling. Int. J. Mech. Sci. 199, 106432 (2021)

    Article  Google Scholar 

  13. Lantada, A.D., Romero, Ad.B., Schwentenwein, M., Jellinek, C., Homa, J.: Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges. Smart Mater. Struct. 25, 054015 (2016)

    Article  Google Scholar 

  14. Hu, J.S., Wang, B.L., Li, J.E., Wang, K.F.: Thermal shock resistance behavior of auxetic ceramic honeycombs with a central crack or an edge crack. Ceram. Int. 46, 11835–21184 (2020)

    Article  Google Scholar 

  15. Tan, X., Jo, W., Granzow, T., Frederick, J., Aulbach, E., Rödel, J.: Auxetic behavior under electrical loads in an induced ferroelectric phase. Appl. Phys. Lett. 94, 042909 (2009)

    Article  Google Scholar 

  16. Tang, H., Jiang, X., Ling, L., Li, L., Hu, Y.: Highly tailorable electromechanical properties of auxetic piezoelectric ceramics with ultra-low porosity. J. Am. Ceram. Soc. 103, 6330–6347 (2020)

    Article  Google Scholar 

  17. Tang, H., Jiang, X., Li, L., Ling, L., Hu, Y.: Electromechanical properties of ultra-low porous auxetic piezocomposite: from the perspective of Poisson’s ratio. J. Am. Ceram. Soc. 104, 2628–2645 (2021)

    Article  Google Scholar 

  18. Miller, W., Smith, C.W., Scarpa, F.L., Abramovitch, H., Evans, K.E.: Multifunctional Negative Poisson’s ratio (Auxetic) Honeycomb Cores with Embedded Piezo-ceramic Patches, In Proceedings of ECCM-13, June 2–5, 2008, Stockholm, Sweden

  19. Li, Z., Wang, K.F., Wang, B.L.: Indentation resistance of brittle auxetic structures: Combining discrete representation and continuum model. Eng. Fract. Mech. 252, 107824 (2021)

    Article  Google Scholar 

  20. Hu, J.S., Wang, B.L.: Crack growth behavior and thermal shock resistance of ceramic sandwich structures with an auxetic honeycomb core. Compos. Struct. 260, 113256 (2021)

    Article  Google Scholar 

  21. Li, J.E., Wang, B.L.: Effect of negative Poisson’s ratio on the fracture mechanics parameters due to mechanical and thermal loads. Int. J. Eng. Sci. 150, 103256 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Z., Wang, B.L., Wang, K.F., Zheng, L.: Improving thermomechanical properties of cracked brittle honeycombs by negative Poisson’s ratio effect. Compos. Struct. 266, 113825 (2021)

    Article  Google Scholar 

  23. Alderson, K.L., Pickles, A.P., Neale, P.J., Evans, K.E.: Auxetic polyethylene: the effect of a negative Poisson’s ratio on hardness. Acta Metall. Mater. 42, 2261–2266 (1994)

    Article  Google Scholar 

  24. Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking. Adv. Mater. 12, 617–628 (2000)

    Article  Google Scholar 

  25. Evans, K.E., Alderson, A.: Auxetic materials: the positive side of being negative. Eng. Sci. Educ. J. 9, 148–154 (2000)

    Article  Google Scholar 

  26. Scarpa, F., Ciffo, L.G., Yates, J.R.: Dynamic properties of high structural integrity auxetic open cell foam. Smart Mater. Struct. 13, 49 (2003)

    Article  Google Scholar 

  27. Chan, N., Evans, K.E.: Indentation resilience of conventional and auxetic foams. J. Cell. Plast. 34, 231–260 (1998)

    Article  Google Scholar 

  28. Webber, R.S., Alderson, K.L., Evans, K.E.: A novel fabrication route for auxetic polyethylene: Part 2 mechanical properties. Polym. Eng. Sci. 48, 1351–1358 (2008)

    Article  Google Scholar 

  29. Lakes, R.S., Elms, K.: Indentability of conventional and negative Poisson’s ratio foams. J. Compos. Mater. 27, 1193–1202 (1993)

    Article  Google Scholar 

  30. Li, Z., Wang, K.F., Wang, B.L., Guo, S.L.: The thermal shock resistance prediction of porous ceramic sandwich structures with temperature-dependent material properties. Ceram. Int. 45, 4043–4052 (2019)

    Article  Google Scholar 

  31. Li, Z., Wang, B.L., Wang, K.F., Zheng, L.: A multi-scale model for predicting the thermal shock resistance of porous ceramics with temperature-dependent material properties. J. Eur. Ceram. Soc. 39, 2720–2730 (2019)

    Article  Google Scholar 

  32. Hanuska, A., Novotny, B.: Circular punch on the unstretchable Westergaard-tyoe subgrade. Arch. Appl. Mech. 64, 127–135 (1994)

    Article  MATH  Google Scholar 

  33. Comez, I., El-Borgi, S.: Contact problem of a graded layer supported by two rigid punches. Arch. Appl. Mech. 88, 1893–1903 (2018)

    Article  Google Scholar 

  34. Comez, I., Omurtag, M.H.: Contact problem between a rigid punch and a functionally graded orthotropic layer resting on a Pasternak foundation. Arch. Appl. Mech. 91, 3937–3958 (2021)

    Article  Google Scholar 

  35. Mahanty, M., Kumar, P., Singh, A.K., Chattopadhyay, A.: Analysis on the propagation of Griffith crack in a magnetoelastic self-reinforced strip subjected to moving punch of constant load. Arch. Appl. Mech. 91, 791–808 (2021)

    Article  Google Scholar 

  36. Moula, M., Meille, S., Le Corre, V., Chevalier, J.: Mechanical characterization of meso-porous alumina by micro- and nano-indentation. Mater. Today Commun. 25, 101315 (2020)

    Article  Google Scholar 

  37. Ben Ghorbal, G., Tricoteaux, A., Thuault, A., Ageorges, H., Roudet, F., Chicot, D.: Mechanical properties of thermally sprayed porous alumina coating by Vickers and Knoop indentation. Ceram. Int. 46, 19843–19851 (2020)

    Article  Google Scholar 

  38. Liu, D.N., Ma, Z.C., Zhao, H.W., Ren, L.Q., Zhang, W.: Mechanical characterization of meso-porous alumina by micro- and nano-indentation. Mater. Today Commun. 28, 102659 (2021)

    Article  Google Scholar 

  39. Choi, J.B., Lakes, R.S.: Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int. J. Mech. Sci. 37, 51–59 (1995)

    Article  MATH  Google Scholar 

  40. Harding, J.W., Sneddon, I.N.: The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Proc. Camb. Philol. Soc. 41, 16 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, X.F.: T-stress near the tips of a cruciform crack with unequal arms. Eng. Fract. Mech. 73, 671–683 (2006)

    Article  Google Scholar 

  42. Qiu, Y., Tian, Y., Sun, S., Hu, J., Wang, Y., Zhang, Z., Liu, A., Cheng, H., Gao, W., Zhang, W., Chai, H., Wu, H.: Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 78, 105337 (2000)

    Article  Google Scholar 

  43. Wu, H., Li, L., Chai, G., Song, F., Kitamura, T.: Three-dimensional thermal weight function method for the interface crack problems in bimaterial structures under a transient thermal loading. J. Therm. Stresses 39, 371–385 (2016)

    Article  Google Scholar 

  44. Li, Z., Wang, K.F., Wang, B.L., Li, J.E.: Size effect on the punch performance of brittle porous ceramics: theoretical analysis and numerical simulation. Int. J. Mech. Sci. 207, 106674 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by Qing Lan Project of Jiangsu Province of China and the National Natural Science Foundation of China (project No. 11502101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J.E. Li or B. Wang.

Ethics declarations

Conflict of interest

The authors do not have known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Displacements and stresses on the surface of the elastic layer.

$$u(r,0) = \frac{2}{\pi }\frac{{W_{0} }}{{M_{11} }}\frac{1}{r}\sum\limits_{\alpha = 1}^{2} {b_{\alpha } A_{1\alpha } } \left[ {a - \sqrt {a^{2} - r^{2} } } \right],\quad r < a$$
(30)
$$u(r,0) = \frac{2}{\pi }\frac{{W_{0} }}{{M_{11} }}\frac{a}{r}\sum\limits_{\alpha = 1}^{2} {b_{\alpha } A_{1\alpha } } ,\quad r \ge a$$
(31)
$$w(r,0) = \left\{ {\begin{array}{*{20}l} {W_{0} ,\quad r < a} \hfill \\ {\frac{{2W_{0} }}{\pi }\arcsin \left( \frac{a}{r} \right),\quad r \ge a} \hfill \\ \end{array} } \right.$$
(32)
$$\sigma_{zz} (r,0) = \frac{2}{\pi }\frac{{W_{0} }}{{M_{11} }}\frac{1}{{\sqrt {a^{2} - r^{2} } }},r \le a$$
(33)
$$\sigma_{rr} (r,0) = \frac{2}{\pi }\frac{{W_{0} a}}{{M_{11} }}\frac{{c_{12} - c_{11} }}{{r^{2} }}\sum\limits_{\alpha = 1}^{2} {b_{\alpha } A_{1\alpha } } ,r > a$$
(34)
$$\sigma_{rr} (r,0) = \frac{2}{\pi }\frac{{W_{0} }}{{M_{11} }}\sum\limits_{\alpha = 1}^{2} {b_{\alpha } C_{4\alpha } } \frac{1}{{\sqrt {a^{2} - r^{2} } }} + \frac{2}{\pi }\frac{{W_{0} }}{{M_{11} }}\frac{{c_{12} - c_{11} }}{{r^{2} }}\sum\limits_{\alpha = 1}^{2} {b_{\alpha } A_{1\alpha } } [a - \sqrt {a^{2} - r^{2} } ],r \le a$$
(35)
$$\sigma_{\theta \theta } (r,0) = \frac{2}{\pi }\frac{{W_{0} a}}{{M_{11} }}\frac{{c_{11} - c_{12} }}{{r^{2} }}\sum\limits_{\alpha = 1}^{2} {b_{\alpha } A_{1\alpha } } ,r > a$$
(36)
$$\sigma_{\theta \theta } (r,0) = \frac{2}{\pi }\frac{{W_{0} }}{{M_{11} }}\sum\limits_{\alpha = 1}^{2} {b_{\alpha } C_{5\alpha } } \frac{1}{{\sqrt {a^{2} - r^{2} } }} + \frac{2}{\pi }\frac{{W_{0} }}{{M_{11} }}\frac{{c_{11} - c_{12} }}{{r^{2} }}\sum\limits_{\alpha = 1}^{2} {b_{\alpha } A_{1\alpha } } [a - \sqrt {a^{2} - r^{2} } ],r \le a$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, B. A porous layer of negative value of Poisson’s ratio under a flat-ended and rigid cylinder indenter. Arch Appl Mech 92, 1603–1614 (2022). https://doi.org/10.1007/s00419-022-02135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02135-z

Keywords

Navigation