Log in

Rare elements enrichment in crustal peraluminous magmas: insights from partial melting experiments

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Experiments were conducted to explore the behavior of Li, Rb, Nb, Sn, Cs, Ta, W during crustal melting and test the anatectic origin of rare metal-bearing peraluminous granites such as rare metal granites (RMGs). The experiments were performed under fluid-absent conditions at 800 and 850 °C, 400 MPa and moderately reducing fO2 (ΔFMQ = − 0.5 to − 0.8). Starting materials were cores of several millimetres drilled from two natural rocks, a biotite-rich paragneiss (Pg) and a muscovite-rich orthogneiss (Og) enriched in Li, Be, Sn, Cs, W. Both protoliths produced small melt fractions from 8 to 20% vol. Melt distributions were either homogeneously distributed at grain boundaries in the Pg or preferentially associated with muscovite reaction zones in the Og. In the Pg at 800 °C, melting is mainly fluid present, driven by interstitial water at grain boundaries. At 850 °C, biotite dehydration-melting produces peritectic orthopyroxene, hercynitic spinel, ilmenite and alkali feldspar in addition to melt. In the Og, muscovite dehydration-melting generates melt plus peritectic biotite, hercynitic spinel, ilmenite, Al silicates and alkali feldspar. Experimental glasses are nearly homogeneous, silica rich, peraluminous and leucogranitic and their major element compositions differ only little between the two protoliths. In contrast, the trace element concentrations vary as a consequence of chemical and textural heterogeneities in our starting materials. Compared with source rocks, the Og glasses are enriched in Rb, Nb, Ta, W and depleted in Li, Cs and the Pg are enriched in Li, Rb, Cs, W and depleted in Nb, Ta. Mass-balance calculations indicate that during muscovite dehydration-melting, Li, Cs and Rb partition into the melt; whereas Nb, Ta and W are preferentially incorporated in peritectic phases. Li and Cs also partition toward the melt during biotite dehydration-melting. The partitioning behavior of trace elements during crustal melting is a function of the melting reaction and partition coefficients between melt, residual and peritectic phases. Experimental glasses are similar to peraluminous muscovite granites but fail to reproduce RMG compositions. Alternatives to mica dehydration-melting such as fluid-present and residual source melting emphasize the difficulties with an origin of RMGs by purely anatectic processes. Crystallization differentiation might have to be combined with mica dehydration-melting to explain the distinctive geochemical features of RMGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan GB (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. J Petrol 51:785–821

    Article  Google Scholar 

  • Albarède F (1995) Introduction to geochemical modeling. Cambridge University Press, Cambridge, p 543

    Book  Google Scholar 

  • Ballouard C, Boulvais P, Poujol M, Gapais D, Yamato P, Tartèse R, Cuney M (2015) Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France. Lithos 220–223:1–22

    Article  Google Scholar 

  • Ballouard C, Poujol M, Zeh A (2018) Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites. Int J Earth Sci 107:2317–2336

    Article  Google Scholar 

  • Barbey P, Villaros A, Marignac C, Montel J-M (2015) Multiphase melting, magma emplacement and P–T-time path in late-collisional context: the Velay example (Massif Central, France). Bull Soc Géol France 186(2–3):93–116

    Article  Google Scholar 

  • Bea F, Montero P (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153

    Article  Google Scholar 

  • Bea F, Pereira MD, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem Geol 117:291–312

    Article  Google Scholar 

  • Belkasmi M, Cuney M, Pollard PJ, Bastoul A (2000) Chemistry of the Ta-Nb-Sn-W oxide minerals from the Yichun rare metal granite (SE China): genetic implications and comparison with Moroccan and French Hercynian examples. Mineral Mag 64:207–523

    Article  Google Scholar 

  • Breaks F W, Selway J B, Tindle A C (2005) Fertile peraluminous granites and related rare-element pegmatites, Superior Province of Ontario. In: Linnen RL, Sampson IM (eds) Rare-element geochemistry and mineral deposits. Geol. Soc. Can. Short Course Notes, St. Catharines, 17:87–125

  • Brearley FW (1987) An experimental and kinetic study of the breakdown of aluminous biotite at 800 °C: reaction microstructures and mineral chemistry. Bull Miner 110:513–532

    Article  Google Scholar 

  • Brearley AJ, Rubie DC (1990) Effects of H2O on the Disequilibrium breakdown of muscovite+quartz. J Petrol 31(4):925–956

    Article  Google Scholar 

  • Breiter K, Müller A, Leichmann J, Gabašova A (2005) Textural and chemical evolution of a fractionated granitic system: the Podlesί stock, Czech Republic. Lithos 80:323–345

    Article  Google Scholar 

  • Brown GC, Fyfe WS (1970) The production of granitic melts during ultrametamorphism. Contrib Mineral Petrol 28:310–318

    Article  Google Scholar 

  • Burnham CW (1979) Magma and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley Interscience, New York, pp 71–136

    Google Scholar 

  • Cameron EN, Jahns RH, McNair AH, Page LR (1949) Internal structure of granitic pegmatites. Econ Geol Monograph 2:155p

    Google Scholar 

  • Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newsl 25:187–198

    Article  Google Scholar 

  • Carlier Le, de Veslud C, Alexandre P, Ruffet G, Cuney M, Cheilletz A (2013) A two-stage exhumation in Western French Massif Central: new geochronological evidences of syn-collisional extension. Lithos 175–176:1–15. https://doi.org/10.1016/j.lithos.2013.04.013

    Article  Google Scholar 

  • Černý P (1991) Rare-element granitic pegmatites. Part 1: anatomy and internal evolution of pegmatite deposits. Part 2: regional to global environments and petrogenesis. Geosci Canada 18:49–81

    Google Scholar 

  • Černý P (1992) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl Geochem 7:393–416

    Article  Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  • Černý P, Masau M, Goad BE, Ferreira K (2005) The Greer Lake leucogranite, Manitoba, and the origin of lepidolite-subtype granitic pegmatites. Lithos 80:305–321

    Article  Google Scholar 

  • Cesare B (2000) Incongruent melting of biotite to spinel in a quartz-free restite at El Joyazo (SE Spain): Textures and reaction characterization. Contrib Miner Petrol 139:273–284

    Article  Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138

    Article  Google Scholar 

  • Charoy B, Noronha F (1996) Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). J Petrol 37:73–94

    Article  Google Scholar 

  • Chicharro E, Boiron M-C, López-García JÁ, Barfod DN, Villaseca C (2016) Origin, ore forming fluid evolution and timing of the Logrosán Sn–(W) ore deposits (Central Iberian Zone, Spain). Ore Geol Rev 72:896–913

    Article  Google Scholar 

  • Christiansen EH, Sheridan MF, Burt DM (1986) The geology and geochemistry of Cenozoic topaz rhyolite from the western United Stated. Geol Soc Am Spec Paper 205:1–82

    Google Scholar 

  • Clemens JD, Stevens G (2016) Melt segregation and magma interactions during crustal melting: breaking out of the matrix. Earth Sci Rev 160:333–349

    Article  Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constrains on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306. https://doi.org/10.1016/0012-821X(87)90227-5

    Article  Google Scholar 

  • Connolly JAD, Holness MB, Rushmer T, Rubie DC (1997) Reaction-induced micro-cracking: an experimental investigation of a mechanism for enhancing anatectic melt extraction. Geology 25:591–594. https://doi.org/10.1130/0091-7613(1997)025%3c0591:RIMAEI%3e2.3.CO;2

    Article  Google Scholar 

  • Crevola G (1987) Les orthomicaschistes, produits de la déformation cisaillante ductile synmétamorphe de granites avec transfert de matière: principaux caractères et exemples dans la chaîne Varisque du Sud de la France. Geodin Acta 1:207–221

    Article  Google Scholar 

  • Cuney M, Barbey P (2014) Uranium, rare metals, and granulite-facies metamorphism. Geosci Front 5:729–745

    Article  Google Scholar 

  • Cuney M, Marignac C, Weisbrod A (1992) The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ Geol 87:1766–1794

    Article  Google Scholar 

  • Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans Roy Soc Edinburgh 73:135–149

    Article  Google Scholar 

  • Deveaud S, Gumiaux C, Gloaguen E, Branquet Y (2013) Spatial statistical analysis applied to rare-element LCT-type pegmatite fields: an original approach to constrain faults-pegmatites-granites relationships. J Geosci 58:163–182. https://doi.org/10.3190/jgeosci.141

    Article  Google Scholar 

  • Devineau K, Pichavant M, Villiéras F (2005) Melting kinetics of granitic powder aggregates at 1175°C, 1 atm. Eur J Mineral 17:387–398

    Article  Google Scholar 

  • Falster AU, Simmons Wm B, Webber KL (1997) The origin of evolved LCT-type granitic pegmatites in the Hoskin Lake granite-pegmatite field, Florence Co., Wisconsin. IAVCEI General Assembly, Jan. 1997, Puerto Vallarta, Mexico, Programme, pp 118

  • Faure M, BéMézème E, Duguet M, Cartier C, Talbot J-Y (2005) Paleozoic tectonic evolution of medio-europa from the example of the French massif central and massif armoricain. J Virt Explor Electron Edit 19(5):1–26

    Google Scholar 

  • Faure M, Lardeaux J-M, Ledru P (2009) A review of the pre-Permian geology of the Variscan French Massif Central. CR Geosci 341:202–213. https://doi.org/10.1016/j.crte.2008.12.001

    Article  Google Scholar 

  • Gaudel T (2016) Conditions de pic de métamorphisme enregistrés par les gneiss de l’unité de la Dronne (Limousin): les limites de la fusion partielle dans le l’Ouest du Massif Central Français. Master’s thesis, University of Orléans, pp 28

  • Gébelin A, Brunel M, Monié P, Faure M, Arnaud N (2007) Transpressional tectonics and Carboniferous magmatism in the Limousin, Massif Central, France: Structural and 40Ar/39Ar investigations. Tectonics 26:1–27. https://doi.org/10.1029/2005TC001822

    Article  Google Scholar 

  • Goodenough KM, Lusty PAJ, Roberts NMW, Key RM, Garba A (2014) Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: age, petrogenesis, and the “pegmatite conundrum.” Lithos 200–201:22–34. https://doi.org/10.1016/j.lithos.2014.04.006

    Article  Google Scholar 

  • Haapala I, Lukkari S (2005) Petrological and geochemical evolution of the Kymi stock, a topaz granite cupola within the Wiborg rapakivi batholith, Finland. Lithos 80:347–362

    Article  Google Scholar 

  • Hammouda T, Pichavant M (1999) Kinetics of melting of fluorphlogopite-quartz pairs at 1 atmosphere. Eur J Mineral 11:637–653

    Article  Google Scholar 

  • Hammouda T, Pichavant M (2000) Melting of fluorphlogopite-plagioclase pairs at 1 atmosphere. Eur J Mineral 12:315–328

    Article  Google Scholar 

  • Hanson GN (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38:26–43

    Article  Google Scholar 

  • Harlaux M, Mercadier J, Marignac C, Peiffert C, Cloquet C, Cuney M (2018) Tracing metal sources in peribatholitic hydrothermal W deposits based on the chemical composition of wolframite: the example of the Variscan French Massif Central. Chem Geol 479:58–85. https://doi.org/10.1016/j.chemgeo.2017.12.029

    Article  Google Scholar 

  • Harris NBW, Inger S (1992) Trace element modelling of pelite-derived granites. Contrib Mineral Petrol 110:46–56

    Article  Google Scholar 

  • Harris NBW, Ayres M, Massey J (1995) Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. J Geophys Res 100(B8):14767–15777

    Google Scholar 

  • Hertogen J, Gijbels R (1976) Calculation of trace element fractionation during partial melting. Geochim Cosmochim Acta 40:313–322

    Article  Google Scholar 

  • Holyoke CW, Rushmer T (2002) An experimental study of grain scale melt segregation mechanisms in two common crustal rock types. J Metamorph Geol 20:493–512

    Article  Google Scholar 

  • Huang WL, Wyllie PJ (1974) Melting relations of muscovite with quartz and sanidine in the K2O-Al2O3-SiO2-H2O system to 30 kilobars and an outline of paragonite melting relations. Am J Sci 274:378–395

    Article  Google Scholar 

  • Hulsbosch N, Hertogen J, Dewaele S, Andre L, Muchez P (2014) Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochim Cosmochim Acta 132:349–374

    Article  Google Scholar 

  • Hulsbosch N (2019) Nb-Ta-Sn-W Distribution in Granite-related Ore Systems: fractionation mechanisms and examples from the Karagwe-Ankole belt of Central Africa. In Ore Deposits American Geophysical Union (AGU), pp 75–107

  • Icenhower J, London D (1995) An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Am Miner 80:1229–1251

    Article  Google Scholar 

  • Icenhower J, London D (1996) Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. Am Miner 81:719–734

    Article  Google Scholar 

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Article  Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. In: Wyllie PJ, El Goresy A, von Engelhardt W, Hahn T (eds) Minerals and rocks 22. Springer-Verlag, Berlin, p 335

    Google Scholar 

  • Kesraoui M, Marignac C, Verkaeren J (2000) L’évolution tardi-magmatique des granites à métaux rares: l’exemple de la coupole de Tin-Amzi (Hoggar-Algérie). Bulletin De La Société Géologique De L’algérie 11(2):195–216

    Google Scholar 

  • Kinnaird J, Bowden P, Ixer RA, Odling NWA (1985) Mineralogy, geochemistry and mineralization of the Ririwai complex, northern Nigeria. J Afr Earth Sc 3:185–222

    Google Scholar 

  • Kontak DJ (1990) The East Kemptville topaz-muscovite leucogranite, Nova Scotia; I. Geological setting and whole-rock geochemistry. Can Mineral 28(4):787–825

    Google Scholar 

  • Konzett J, Hauzenberger C, Ludwig T, Stalder R (2018) Anatectic granitic pegmatites from the eastern Alps: a case study of variable rare metal enrichment during high-grade regional metamorphism. II. Pegmatite staurolite as an indicator of anatectic pegmatite parent melt formation—a field and experiment study. Can Mineral 56:603–624

    Article  Google Scholar 

  • Kovalenko VI, Tsaryeva GM, Goreglyad AV, Yarmolyuk VV, Troitsky VA, Hervig RL, Farmer GL (1995) The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Econ Geol 90:530–547

    Article  Google Scholar 

  • Kovalenko V I, Kovalenko N I (1976) Ongonites (topaz bearing quartz keratophyre) – subvolcanic analogues of rare metal Li-F granites: Nauka, Moskva, pp 124 (in Russian)

  • Lardeaux J-M (2014) Deciphering orogeny: a metamorphic perspective. Examples from European Alpine and Variscan belts. Part II: Variscan metamorphism in the French Massif Central—a review. Bull Soc Géol France 185(5):281–310

    Article  Google Scholar 

  • Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stage of crustal anatexis. Contrib Miner Petrol 99:226–237

    Article  Google Scholar 

  • Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN, Vidal P (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics 134:39–57

    Article  Google Scholar 

  • Linnen RL, Pichavant M, Holtz F, Burgess S (1995) The effect of ƒo2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 °C and 2 kbar. Geochim Cosmochim Acta 59:1579–1588

    Article  Google Scholar 

  • Linnen R L, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL and Samson IM (eds) Rare-element geochemistry and mineral deposits. In: Geological Association of Canada, GAC, Short Course Canada

  • London D (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80:281–303. https://doi.org/10.1016/j.lithos.2004.02.009

    Article  Google Scholar 

  • London D (2008) Pegmatites. Canadian Mineralogist Special Publication, 10, pp 368

  • Lotout C, Pitra P, Poujol M, Van Den Driessche J (2017) Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications. Int J Earth Sci 106:501–515

    Article  Google Scholar 

  • Luth WC (1969) The system NaAlSi3O8-SiO2 and KAlSi3O8 to 20kb and the relationship between H2O content pH2O and ptotal in granitic magmas. Am J Sci 267A:325–341

    Google Scholar 

  • Manning DAC, Hill PI (1990) The petrogenetic and metallogenetic significance of topaz granite from the Southwest England orefield. Geol Soc Am Spec Pap 246:51–69

    Google Scholar 

  • Mayne MJ, Moyen J-F, Stevens G, Kaisleniemi L (2016) Rcrust: a tool for calculating path-dependent open system processes and application to melt loss. J Metamorph Geol 34:663–682

    Article  Google Scholar 

  • Melleton J, Faure M, Cocherie A (2009) Monazite U-Th/Pb chemical dating of the Early Carboniferous syn-kinematic MP/MT metamorphism in the Variscan French Massif Central. Bull Soc Géol France 180(3):283–292

    Article  Google Scholar 

  • Melleton J, Gloaguen E, Frei D (2015) Rare elements (Li-Be-Ta-Sn-Nb) magmatism in the European Variscan belt, a review. SGA, Ressources minérales dans un monde durable, Nancy, France pp 807–810

  • Michaud JA-S, Pichavant M (2020) Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: evidence from Argemela (Central Portugal). Geochim Cosmochim Acta 289:130–157. https://doi.org/10.1016/j.gca.2020.08.022

    Article  Google Scholar 

  • Michaud JA-S (2019) Rare metal granites: origin, emplacement and mechanisms of the magmatic-hydrothermal transition. Insights from the Argemela rare metal granite (Portugal) and an experimental study. PhD thesis, University of Orléans, pp 365

  • Misra S, Burlini L, Burg J-P (2009) Strain localization and melt segregation in deforming metapelites. Phys Earth Planet Inter 177:173–179. https://doi.org/10.1016/j.pepi.2009.08.011

    Article  Google Scholar 

  • Montel J-M, Vielzeuf D (1994) Partial melting of metagreywackes 1. Fluid absent experiments and phase relationships. Contrib Miner Petrol 117:375–393

    Article  Google Scholar 

  • Montel J-M, Vielzeuf D (1997) Partial melting of metagreywacke-2: compositions of minerals and melts. Contrib Miner Petrol 128:176–196

    Article  Google Scholar 

  • Montel J-M, Weber C, Barbey P, Pichavant M (1986) Thermo-barométrie du domaine anatectique du Velay (Massif Central, France) et conditions de genèse des granites tardi-migmatitiques. Comptes Rendus Académie Des Sciences Paris 302:647–652

    Google Scholar 

  • Muller A, Romer R, Pedersen R-B (2017) The Sveconorwegian pegmatite province—thousands of pegmatites without parental granites. Can Mineral 55:283–315

    Article  Google Scholar 

  • Nabelek PI (1999) Trace element distribution among rock-forming minerals in Black Hills migmatites, South Dakota: a case for solid-state equilibrium. Am Miner 84:1256–1269

    Article  Google Scholar 

  • Nabelek PI, Russ-Nabelek C, Denison JR (1992a) The generation and crystallization conditions of the Proterozoic Harney Peak Leucogranite, Black Hills, South Dakota, USA: Petrologic and geochemical constraints. Contrib Mineral Petrol 110:173–191

    Article  Google Scholar 

  • Nabelek PI, Russ-Nabelek C, Haeussler GT (1992b) Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota. Geochim Cosmochim Acta 56:403–417

    Article  Google Scholar 

  • Neiva ANAMR (2002) Portuguese granites associated with Sn-W and Au mineralizations. Bull Geol Soc Finl 79(1–2):79–101

    Article  Google Scholar 

  • PatiñoDouce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39(4):689–710

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21(1):115–144

    Article  Google Scholar 

  • Pichavant M, Valencia Herrera J, Boulmier S, Briqueu L, Joron JL, Juteau M, Marin L, Michard A, Sheppard SMF, Treuil M, Vernet M (1987) The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In Magmatic processes: physicochemical principles (ed. B.O. Mysen). Geochem Soc Spec Public 1:359–373

    Google Scholar 

  • Pichavant M, Kontak DJ, Herrera V, Clark AH (1988a) The Miocene-Pliocene Macusani Volcanics, SE Peru. I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contrib Miner Petrol 100:300–324

    Article  Google Scholar 

  • Pichavant M, Kontak D, Briqueu L, Valencia Herrera J, Clark AH (1988b) The Macusani Volcanics, SE Peru: II. Geochemistry and origin of a felsic peraluminous magma. Contrib Miner Petrol 100:325–338

    Article  Google Scholar 

  • Pichavant M, Villaros A, Deveaud S, Scaillet B, Lahlafi M (2016) The influence of redox state on mica crystallization in leucogranite and pegmatitic liquids. Can Mineral 54:559–581

    Article  Google Scholar 

  • Pillet D, Chevenoy M, Bélanger M (1992) Pétrologie du granite peralcalin du lac Brisson, Labrador central, Nouveau-Québec. 1. Mode de mise en place et évolution chimique. Revue Canadienne Des Sciences De La Terre 29:353–372

    Article  Google Scholar 

  • Raimbault L (1987) Genèse des granites à métaux rares : Revue comparative des modèles géochimiques. Géol Fr 3:101–108

    Google Scholar 

  • Raimbault L, Burnol L (1998) The Richemont rhyolite dyke, Massif Central, France; a subvolcanic equivalent of rare-metal granites. Can Mineral 36:265–282

    Google Scholar 

  • Raimbault L, Cuney M, Azencott C, Duthou J-L, Joron J (1995) Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol 90:548–576

    Article  Google Scholar 

  • Renno A (1997) Zur Petrogenese der Albitgranite von Abu Dabbab und Nuweibi, Central Eastern Desert, Ägypten. Unpublished PhD Thesis, Technische Universität Berlin, Berlin, pp 216

  • Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. US Geological Survey Bulletin 1452

  • Roda E, Pesquera A, Velasco F, Fontan F (1999) The granitic pegmatites of the Fregeneda area (Salamanca, Spain): characteristics and petrogenesis. Mineral Mag 63:535–556

    Article  Google Scholar 

  • Roda-Robles E, Villaseca C, Pesquera A, Gil-Crespo PP, Vieira R, Lima A, Garate-Olave I (2018) Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geol Rev 95:408–430

    Article  Google Scholar 

  • Romer R, Kroner U (2015) Sediment and weathering control on the distribution of Paleozoic magmatic tin-tungsten mineralization. Miner Deposita 50:327–338

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust. Elsevier, Amsterdam, pp 1–70

    Google Scholar 

  • Rushmer T (2001) Volume change during partial melting reactions: implications for melt extraction, melt geochemistry and crustal rheology. Tectonophysics 342:389–405

    Article  Google Scholar 

  • Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmas. J Petrol 36:663–705

    Article  Google Scholar 

  • Schmitt AK, Emmermann R, Trumbull RB, Bühn B (2000) Petrogenetic aspects of metaluminous and per-alkaline granites in the Brandberg anorogenic complex, Namibia: evidence for major mantle contribution. J Petrol 41:1207–1239

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Shaw RA, Goodenough KM, Roberts NMW, Horstwood MSA, Chenery SR, Gunn AG (2016) Petrognenesis of rare-metal pegmatites in high-grade metamorphic terranes: a. Precambr Res 281:338–362. https://doi.org/10.1016/j.precamres.2016.06.008

    Article  Google Scholar 

  • Shearer CK, Papike JJ, Laul JC (1987) Mineralogical and chemical evolution of a rare-element granite-pegmatite system: Harney Peak granite, Black Hills, south Dakota. Geochim Cosmochim Acta 51:473–486

    Article  Google Scholar 

  • Shearer CK, Papike JJ, Jolliff BL (1992) Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, south Dakota. Can Mineral 30:785–809

    Google Scholar 

  • Simons B, Shail RK, Andersen JCØ (2016) The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England. Lithos 260:76–94. https://doi.org/10.1016/j.lithos.2016.05.010

    Article  Google Scholar 

  • Simons B, Andersen JCØ, Shail RK, Jenner FE (2017) Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: precursor processes to magmatic-hydrothermal mineralisation. Lithos 278–281:491–512. https://doi.org/10.1016/j.lithos.2017.02.007

    Article  Google Scholar 

  • Spear FS (1995) Metamorphic phase equilibria and pressure-temperature-time paths, 2nd edn. Mineralogical Society of America, Washington

    Google Scholar 

  • Stepanov AS, Hermann J (2013) Fractionation of Nb and Ta by biotite and phengite: implications for the “missing Nb paradox.” Geology 41:303–306

    Article  Google Scholar 

  • Stepanov A, Mavrogenes JA, Meffre S, Davidson P (2014) The key role of mica during igneous concentration of tantalum. Contrib Mineral Petrol 167:1009. https://doi.org/10.1007/s00410-014-1009-3

    Article  Google Scholar 

  • Stevens G, Villaros A, Moyen J-F (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35:9–12. https://doi.org/10.1130/G22959A.1

    Article  Google Scholar 

  • Stewart DB (1978) Petrogenesis of lithium-rich pegmatites. Am Miner 63:970–980

    Google Scholar 

  • Taylor JR, Wall VJ, Pownceby MI (1992) The calibration and application of accurate redox sensors. Am Miner 77:284–295

    Google Scholar 

  • Thompson AB (1982) Dehydration Melting of Pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595

    Article  Google Scholar 

  • Tumarkina E, Misra S, Burlini L, Connolly JAD (2011) An experimental study of the role of shear deformation on partial melting of a synthetic metapelite. Tectonophysics 503:92–99

    Article  Google Scholar 

  • Turpin L, Leroy JL, Sheppard SMF (1990) Isotopic (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in a Hercynian granite, Massif Central, France. Chem Geol 88:85–98

    Article  Google Scholar 

  • Vielzeuf D, Clemens JD (1992) The fluid-absent melting of phlogopite + quartz: experiments and models. Am Miner 77:1206–1222

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system: consequences for crustal differentiation. Contrib Mineral Petrol 98:257–276

    Article  Google Scholar 

  • Vielzeuf D, Montel J-M (1994) Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 177:375–393

    Article  Google Scholar 

  • Vielzeuf D, Schmidt MW (2001) Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol 141:251–267

    Article  Google Scholar 

  • Villaros A, Pichavant M (2019) Mica-liquid trace elements partitioning and the granite-pegmatite connection: the St-Sylvestre complex (Western French Massif Central). Chem Geol 528:119265

    Article  Google Scholar 

  • Villaros A, Laurent O, Couzinié S, Moyen J-F, Mintrone M (2018a) Plutons and domes: the consequences of anatectic magma extraction—example from the southeastern French Massif Central. Int J Earth Sci 107:2819–2842. https://doi.org/10.1007/s00531-018-1630-x

    Article  Google Scholar 

  • Villaros A, Pichavant M, Michaud J (2018b) Experimental melting of ortho- and paragneiss under fluid-present conditions: melt compositions (major and trace elements) and implications for granite genesis. EMPG, Clermont-Ferrand, p 130

  • Wolf M, Romer RL, Franz L, López-Moro FJ (2018) Tin in granitic melts: the role of melting temperature and protolith composition. Lithos 310–311:20–30

    Article  Google Scholar 

  • Wolf M (2018) The role of partial melting on trace element and isotope systematics of granitic melts. Potsdam, PhD p 139

  • Yakymchuk C, Brown M (2014) Behaviour of zircon and monazite during crustal melting. J Geol Soc Lond 171:465–479

    Article  Google Scholar 

  • Yang P, Rivers T (2000) Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, Western Labrador: structural, compositional and thermal controls. Geochim Cosmochim Acta 64:1451–1472

    Article  Google Scholar 

  • Yardley BWD (2009) The role of water in the evolution of the continental crust. J Geol Soc Lond 166:585–600. https://doi.org/10.1144/0016-76492008-101

    Article  Google Scholar 

  • Yuan S, Williams-Jones AE, Romer RL, Zhao P, Mao J (2019) Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: insights from the Nanling region, China. Econ Geol 114(5):1005–1012

    Article  Google Scholar 

  • Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72:311–408

    Article  Google Scholar 

  • Zhu J-C, Li R-K, Li F-C, **ong X-L, Zhou F-Y, Huang X-L (2001) Topaz-albite granites and rare-metal mineralization in the Limu District, Guangxi Province, southeast China. Miner Deposita 36(5):393–405

    Article  Google Scholar 

Download references

Acknowledgements

This study was initiated as part of the doctoral thesis of JM supported by the Labex VOLTAIRE (ANR-10-LABX-100-01), the ERAMIN project NewOres and the ANR project VARPEG (ANR-15-CE01-0001). The authors acknowledge Dr. I. Di Carlo for assistance with analyses at the microprobe. The manuscript significantly benefited from the relevant recommendations and comments of the Editor in Chief Pr. Dr. Othmar Müntener, Pr. Dr. Robert Linnen and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Anne-Sophie Michaud.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. A1

Example of black and white images produced to estimate the melt percentage from pixel ratio. a BSE panorama of the Og at 800 °C. b Black pixels representing the restite, c black pixels representing zones of 100% melt, d and e black pixels representing melt-peritectic phase mixtures in muscovite reaction zones where melt represents ~ 63% and ~ 25% of the mixture respectively. See text and Fig.A2 for additional details (TIF 24362 KB)

Fig. A2

Examples of black and white images produced in melt-peritectic phases mixtures from muscovite reaction zones in Og charges to estimate the relative proportion of melt. Row (a) are BSE images of two muscovite reaction zones with contrasted melt proportions in the Og 800°C charge. b and c are black and white images of the same zones showing melt (black pixels in row b) and peritectic phases (black pixels in row c) whose respective proportions can be calculated as a pixel ratio (TIF 23852 KB)

Fig. A3

Location of LA-ICP-MS spots and corresponding black and white images produced to calculate proportions of melt and peritectic phases. a BSE images taken after LA-ICP-MS analysis. b Hand outlined peritectic phases and melt for each zone analyzed. Black pixels correspond to the melt (c) and to the peritectic phases (d). Per: peritectic phases mixture (TIF 34303 KB)

Supplementary file4 (XLSX 209 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michaud, J.AS., Pichavant, M. & Villaros, A. Rare elements enrichment in crustal peraluminous magmas: insights from partial melting experiments. Contrib Mineral Petrol 176, 96 (2021). https://doi.org/10.1007/s00410-021-01855-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01855-9

Keywords

Navigation