Log in

The Miocene-Pliocene Macusani Volcanics, SE Peru

I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Miocene-Pliocene Macusani volcanics, SE Peru, outcrop in three separate tectonic intermontane basins developed on a Paleozoic-Mesozoic volcano-sedimentary sequence. Several ignimbrite sheets are recognized and K-Ar dates record at least semi-continuous volcanic activity from 10 to 4 Ma in the Macusani field. The volcanics in the Macusani basin comprise crystal-rich (45% crystals) ash-flow tuffs and rare obsidians glasses, both with unusual mineralogy, similar to two-mica peraluminous leucogranites. The mineralogical assemblage (quartz, sanidine Or69–75, plagioclase, biotite, muscovite and andalusite (both coexisting in the entire volcanic field), sillimanite, schörl-rich tourmaline, cordierite-type phases, hercynitic spinel, fluor-apatite, ilmenite, monazite, zircon, niobian-rutile) is essentially constant throughout the entire Macusani field. Two distinct generations of plagioclase are recognized, viz. group I (An10–20) and group II (An30–45). Sillimanite forms abundant inclusions in nearly all phases and is earlier than andalusite which occurs as isolated phenocrysts. Biotite (Al-, Ti-, Fe- and F-rich) shows pronounced deficiencies in octahedral cations. Muscovite is also F-rich and displays limited biotitic and celadonitic substitutions. There is no systematic variation in mineral chemistry with stratigraphic position. The mineralogical data provide a basis for distinction between an early magmatic and a main magmatic stage. The early stage corresponds to the magmatic evolution at or near the source region and includes both restites and early phenocrysts. Some biotites (with textures of disequilibrium melting to Fe — Zn spinel), part of the sillimanite, apatite and monazite, possibly some tourmaline and cordierite-type phases are restites. However, the restite content of the magma was low (5 vol. % maximum). The group II plagioclase are interpreted as early phenocrysts. During this stage, temperatures were as high as 800° C, pressure was no more than 5–7.5 kbar, \(f_{O_2 }\)was intermediate between WM and QFM and \(a_{H_2 O}\)was low. The biotite melting textures and the coexistence of restites and early phenocrysts imply fast heating rates in the source region. The transition between the early and the main magmatic stage was abrupt (andalusite crystallization in place of sillimanite, group I vs. group II plagioclases) and suggests rapid ascent of the magma from its source region. During the main crystallization stage, temperature was 650° C or lower at a pressure of 1.5–2 kbar. \(a_{H_2 O}\)(calculated from equilibrium between muscovite, quartz, sanidine and andalusite) are around 1, suggesting conditions close to H2O-saturation. f HF is around 1 bar but the \({{f_{H_2 O} } \mathord{\left/{\vphantom {{f_{H_2 O} } {f_{HF} }}} \right.\kern-\nulldelimiterspace} {f_{HF} }}\)ratios are significantly different between samples. \(f_{H_2 }\)ranges between 138 and 225 bar. This study shows that felsic, strongly peraluminous, leucogranitic magmas having andalusite and muscovite phenocrysts may be generated under H2O-undersaturated conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • de Albuquerque CAR (1973) Geochemistry of biotites from granitic rocks, Central Portugal. Geochim Cosmochim Acta 37:1779–1802

    Google Scholar 

  • Arenas MJ (1982) Memoria explicativa del mapa geologico de la Mina Santo Domingo, Puno. Report Minsur, S.A., p 9

  • Barnes AE, Edwards G, Mc Laughlin WA, Friedman I, Joensuu O (1970) Macusanite occurrence, age, and composition, Macusani, Peru. Bull Geol Soc Am 81:1539–1546

    Google Scholar 

  • Benard F, Moutou P, Pichavant M (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J Geol 93:271–291

    Google Scholar 

  • Blake S (1984) Volatile oversaturation during the eruption of silicic magma chambers as an eruption trigger. J Geophys Res 89:8237–8244

    Google Scholar 

  • Blumel P, Schreyer WE (1977) Phase relations in pelitic and psammitic gneisses of the sillimanite-potash feldspar and cordieritepotash feldspar zones in the Moldanubicum of the Lam-Bodenmais area, Bavaria. J Petrol 18:431–459

    Google Scholar 

  • Boher M, Stenger JF, Pichavant M (1987) Low temperature, Li-, F-rich granitic magmas. Terra Cognita 7:356

    Google Scholar 

  • Bohlen SR, Boettcher AL, Wall VJ, Clemens JD (1983) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contrib Mineral Petrol 83:270–277

    Google Scholar 

  • Bohlen SR, Dollase WA, Wall VJ (1986) Calibration and application of spinel equilibria in the system FeO-Al2O3-SiO2. J Petrol 27:1143–1156

    Google Scholar 

  • Brearley AJ (1987a) A natural example of the disequilibrium breakdown of biotite at high temperature: TEM observations and comparison with experimental kinetic data. Mineral Mag 51:93–106

    Google Scholar 

  • Brearley AJ (1987b) An experimental and kinetic study of the breakdown of aluminous biotite at 800° C: reaction microstructures and mineral chemistry. Bull Mineral 110:513–532

    Google Scholar 

  • Brown M (1983) The petrogenesis of some migmatites from the Presqu'île de Rhuys, Southern Brittany, France. In: Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism. Shiva, Natwich, pp 174–200

    Google Scholar 

  • Brown WL, Parsons I (1981) Towards a more practical two-feldspar geothermometer. Contrib Mineral Petrol 76:369–377

    Google Scholar 

  • Burnham CW (1979a) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of Hydrothermal Ore Deposits, 2nd edn. John Wiley and Sons, New York, pp 71–136

    Google Scholar 

  • Burnham CW (1979b) The importance of volatile constituants. In: Yoder HS Jr (ed) The evolution of the igneous rocks, Princeton University Press, Princeton, pp 439–482

    Google Scholar 

  • Burnham CW, Nekvasil H (1986) Equilibrium properties of granite pegmatite magmas. Am Mineral 71:239–263

    Google Scholar 

  • Burnham CW, Holloway JR, Davis NF (1969) Thermodynamic properties of water to 1000° C and 10000 bars. Geol Soc Am Spec Pap 132

  • Černý P, Goad BE, Hawthorne FC, Chapman R (1986) Fractionation trends of the Nb- and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole. Am Mineral 71:501–517

    Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138

    Google Scholar 

  • Charoy B (1986) The genesis of the Cornubian batholith (South-West England): the example of the Carnmenellis pluton. J Petrol 27:571–604

    Google Scholar 

  • Chatterjee ND, Johannes W (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl3 Si3 O10 (OH2). Contrib Mineral Petrol 48:89–114

    Google Scholar 

  • Clark AH, Palma VV, Archibald DA, Farrar E, Arenas MJ, Robertson RCR (1983) Occurrence and age of the tin mineralization in the Cordillera Oriental, southern Peru. Econ Geol 78:514–520

    Google Scholar 

  • Clark AH, Kontak DJ, Farrar E (1984) A comparative study of the metallogenetic and geochronological relationships in the northern part of the Central Andean tin belt, SE Peru and NW Bolivia. In: Janelidze TV, Tvalchralidze AG (eds) Proceedings of the VI quadrennial IAGOD symposium. Schweizerbart'sche, Stuttgart, pp 269–279

    Google Scholar 

  • Clark AH, Yamamura BK, Taipe Alejandro J (1987) Tungsten mineralization associated with subvolcanic pegmatite: the Palca XI deposit, Puno, southeastern Peru. GAC-MAC Ann Meet Abstracts with Programs 12:32

    Google Scholar 

  • Clarke DB (1981) The mineralogy of peraluminous granites: a review. Can Mineral 19:3–17

    Google Scholar 

  • Clarke DB, Mc Kenzie CB, Muecke GK, Richardson SW (1976) Magmatic andalusite from the South Mountain batholith, Nova Scotia. Contrib Mineral Petrol 56:279–287

    Google Scholar 

  • Clemens JD, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can Mineral 19: 111–131

    Google Scholar 

  • Clemens JD, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Contrib Mineral Petrol 88:354–371

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306

    Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite: experimental constraints. Am Mineral 71:317–324

    Google Scholar 

  • Ewart A (1963) Petrology and geochemistry of the quaternary pumice ash in the Taupo area, New Zealand. J Petrol 4:392–431

    Google Scholar 

  • Francis GH (1959) Ignimbritas (Sillar) de la Cordillera Oriental del sur del Perù. Inst Nac. de Invest Y Foment. Minero Bol 21:13–32

    Google Scholar 

  • French BM, Meyer HOA (1970) Andalusite and “β quartz ss” in Macusani glass, Peru. Carnegie Inst Washington Year B 68:339–342

    Google Scholar 

  • French BM, Jezek PA, Appleman DE (1978) Virgilite: a new lithium aluminium silicate mineral from the Macusani glass, Peru. Am Mineral 63:461–465

    Google Scholar 

  • Frost MT, Grey IE, Harrowfield IR, Mason K (1983) The dependence of alumina and silica contents on the extent of alteration of weathered ilmenites from Western Australia. Mineral Mag 47:201–208

    Google Scholar 

  • Gil Ibarguchi JI, Martinez FJ (1982) Petrology of garnet-cordieritesillimanite gneisses from the El Tormes thermal dome, Iberian Hercynian foldbelt (W Spain). Contrib Mineral Petrol 80:14–24

    Google Scholar 

  • Grant JA (1985) Phase equilibria and partial melting of pelitic rocks. In: Ashworth JR (ed) Migmatites, Blackie and Sons, Glasgow, pp 86–144

    Google Scholar 

  • Grey IE, Reid AF, Jones DG (1974) Reaction sequences in the reduction of ilmenite: 4-interpretation in terms of the Fe-Ti-O and Fe-Mn-Ti-O phase diagrams. Trans Inst Min Metall 83:C105-C111

    Google Scholar 

  • Grey IE, Reid AF (1975) The structure of pseudorutile and its role in the natural alteration of ilmenite. Am Mineral 60:898–906

    Google Scholar 

  • Grey IE, Li C, Watts JA (1983) Hydrothermal synthesis of goethite-rutile intergrowth structures and their relationship to pseudorutile. Am Mineral 68:981–988

    Google Scholar 

  • Harmon RS, Barreiro BA (1984) Andean Magmatism: Chemical and Isotopic Constraints. Shiva, p 250

  • Harrison TM, Watson EB (1984) The behaviour of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Google Scholar 

  • Haslam HW (1983) An isotropic alteration product of cordierite. Mineral Mag 47:238–240

    Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminium silicate phase diagram. Am J Sci 271:97–131

    Google Scholar 

  • Holdaway MJ (1980) Chemical formulae and activity models for biotite, muscovite, and chlorite applicable to pelitic metamorphic rocks. Am Mineral 65:711–719

    Google Scholar 

  • Holdaway MJ, Lee SM (1977) Fe-Mg cordierite stability in highgrade pelitic rocks based on experimental, theoretical and natural observations. Contrib Mineral Petrol 63:175–198

    Google Scholar 

  • Huebner JS (1971) Buffering techniques for hydrostatic systems at elevated pressures. In: Ulmer GC (ed) Research techniques for high pressure and high temperature. Springer, Berlin Heidelberg New York, pp 125–177

    Google Scholar 

  • Huppert HE, Sparks RSJ (1987) The fluid dynamics of crustal melting by injection of basaltic sills. Abs Symp Origin of Granites: 49

  • Injoque J, Miranda C, Carlier G, Sologuren W, Tijero L (1983) Evidencia de basamento pre-cambriano en la region Inchupalla-Puno. Bol Soc Geol Peru 70:25–28

    Google Scholar 

  • James DE (1971) Plate tectonic model for the evolution of Central Andes. Bull Geol Soc Am 82:3325–3346

    Google Scholar 

  • Joliff BL, Papike JJ, Shearer CK (1986) Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Am Mineral 71:472–500

    Google Scholar 

  • Kontak DJ (1985) The Magmatic and Metallogenetic Evolution of a Craton-Orogen Interface: The Cordillera de Carabaya, Central Andes, SE Peru. PhD Thesis, Queen's Univ, p 714

  • Kontak DJ, Pichavant M, Clark AH (1984a) Petrology of the Pliocene peraluminous volcanics from Macusani, SE Peru. EOS 65:299

    Google Scholar 

  • Kontak DJ, Clark AH, Farrar E (1984b) The magmatic evolution of the Cordillera Oriental of SE Peru: crustal versus mantle components. In: Harmon RS, Barrerio BA (eds) Andean Magmatism, Shiva, pp 203–219

  • Kontak DJ, Clark AH, Farrar E, Pearce TH, Strong DF, Baadsgaard H (1986) Petrogenesis of a Neogene shoshonite suite, Cerro Moromoroni, Puno, SE Peru. Can Mineral 24:117–135

    Google Scholar 

  • Kontak DJ, Clark AH, Farrar E, Archibald DA (1987) Geochronological data for Tertiary granites of the southeast Peru segment of the Central Andean tin belt. Econ Geol 82:1611–1618

    Google Scholar 

  • Korzhinskiy MA (1984) Apatite solid solutions as indicators of the fugacity of HCl0 and HF0 in hydrothermal fluids. Geochem Int 18:44–60

    Google Scholar 

  • Kudo AM, Weill DF (1970) An igneous plagioclase thermometer. Contrib Mineral Petrol 25:52–65

    Google Scholar 

  • Kulm LD, Dymond J, Dasch EJ, Hussong DM (1981) Nazca Plate: crustal formation and Andean convergence. Geol Soc Am Mem 154

  • Lacroix A (1893) Les enclaves des roches volcaniques. Protat Frères, p 710

  • Lameyre J (1973) Les marques de l'eau dans les leucogranites du Massif Central Français. Bull Soc Geol Fr 7:288–295

    Google Scholar 

  • Laubacher G (1978) Estudio geologico de la region norte du lago Titicaca. Bol Inst Geol Mineria 5:120

    Google Scholar 

  • Le Fort P (1973) Les leucogranites à tourmaline de l'Himalaya sur l'exemple du granite du Manaslu (Népal Central). Bull Soc Geol Fr 7:555–561

    Google Scholar 

  • Le Fort P (1981) Manaslu leucogranite: a collision signature of the Himalaya. A model for its genesis and emplacement. J Geophys Res 86:10545–10568

    Google Scholar 

  • Lehmann B (1978) A Precambrian core sample from the Altiplano, Bolivia. Geol Rundsch 67:270–278

    Google Scholar 

  • Linck G (1926) Ein neuer kristallführender Tektit von Paucartambo in Peru. Chem Erde 2:157–174

    Google Scholar 

  • London D (1984) Experimental phase equilibria in the system LiAl-SiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites. Am Mineral 69:995–1004

    Google Scholar 

  • London D, Weaver BL, Hervig RL (1986) Liquidus relations of Macusani rhyolite, an analogue for rare-element granite-pegmatite systems. GSA Abstracts with Programs 18:675

    Google Scholar 

  • Luth WC (1976) Granitic rocks. In: Bailey DK, Mc Donald R (eds) The evolution of the crystalline rocks. Academic Press, New York, pp 335–417

    Google Scholar 

  • Manning DAC (1981) The application of experimental studies in determining the origin of topaz-quartz-tourmaline rocks and tourmaline-quartz rock. Proc Ussher Soc 5:121–127

    Google Scholar 

  • Manning DAC (1982) Chemical and morphological variations in tourmalines from the Hub Kapong batholith of peninsular Thailand. Mineral Mag 45:139–147

    Google Scholar 

  • Manning DAC, Martin JS, Pichavant M, Henderson CMB (1984) The effect of F, B and Li on melt structures in the granite system: different mechanisms? NERC Rpt Progr Exp Petrol 6:36–41

    Google Scholar 

  • Marchand J, Bossière G, Leyreloup A (1982) Pinite and pseudo“glass” in high-grade metamorphic gneisses. A discussion of: “biotite melting in high-grade metamorphic gneisses from the Haut-Allier (French Massif Central)”. Contrib Mineral Petrol 79:439–442

    Google Scholar 

  • Maury RC, Bizouard H (1974) Melting of acid xenoliths into a basanite: an approach to the possible mechanisms of crustal contamination. Contrib Mineral Petrol 48:275–286

    Google Scholar 

  • Mehnert KR, Büsch W (1985) The formation of K-feldspar megacrysts in granites, migmatites and augengneisses. N Jb Miner Abh 151:229–259

    Google Scholar 

  • Miller CF, Stoddard EF, Bradfish LJ, Dollase WA (1981) Composition of plutonic muscovite: genetic implications. Can Mineral 19:25–34

    Google Scholar 

  • Monier G, Mergoil-Daniel J, Labernardière H (1984) Générations successives de muscovites et feldspaths potassiques dans les leu cogranites du massif de Millevaches (Massif Central Français). Bull Mineral 107:55–68

    Google Scholar 

  • Monier G, Robert JL (1986a) Muscovite solid solutions in the system K2O-MgO-FeO-Al2O3-SiO2-H2O: an experimental study at 2 kbar PH2O and comparison with natural Li-free white micas. Mineral Mag 50:257–266

    Google Scholar 

  • Monier G, Robert JL (1986b) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content; an experimental study in the system K2O-Li2O2-MgO-FeO-Al2O3-SiO2-H2O-HF at 600° C, 2 kbar PH2O. Comparison with natural lithium micas. Mineral Mag 50:641–651

    Google Scholar 

  • Montel JM (1986) Experimental determination of the solubility of Ce monazite in SiO2-Al2O3-K2O-Na2O melts at 800° C 2 kbar under H2O-saturated conditions. Geology 14:659–662

    Google Scholar 

  • Montel JM, Weber C, Barbey P, Pichavant M (1986a) Thermobarométrie du domaine anatectique du Velay (Massif Central, France) et conditions de genèse des granites tardi-migmatitiques. C R Acad Sci Paris 302:647–652

    Google Scholar 

  • Montel JM, Weber C, Pichavant M (1986b) Biotite-sillimanitespinel assemblages in high-grade metamorphic rocks: occurrences, chemographic analysis and thermobarometric interest. Bull Mineral 109:555–573

    Google Scholar 

  • Munksgaard NC (1984) High δ 18O and possible pre-eruptional Rb-Sr isochrons in cordierite-bearing Neogene volcanics from SE Spain. Contrib Mineral Petrol 87:351–358

    Google Scholar 

  • Munoz JL, Ludington SD (1974) Fluoride-hydroxyl exchange in biotite. Am J Sci 274:396–413

    Google Scholar 

  • Munoz JL, Ludington S (1977) Fluorine-hydroxyl exchange in synthetic muscovite and its application to muscovite-biotite assemblages. Am Mineral 62:304–308

    Google Scholar 

  • Neiva AMR (1974) Geochemistry of tourmaline (schorlite) from granites, aplites and pegmatites from Northern Portugal. Geochim Cosmochim Acta 38:1307–1317

    Google Scholar 

  • Neiva AMR (1976) The geochemistry of biotites from granites of Northern Portugal with special reference to their tin content. Mineral Mag 40:453–466

    Google Scholar 

  • Newell ND (1949) Geology of the Lake Titicaca region, Peru and Bolivia. Geol Soc Am Mem 36

  • Newell ND, Chronic J, Roberts T (1953) Upper Paleozoic of Peru. Geol Soc Am Mem 58

  • Nicholls J, Carmichael ISE, Stormer JC Jr (1971) Silica activity and Ptotal in igneous rocks. Contrib Mineral Petrol 33:1–20

    Google Scholar 

  • Noble DC, Peterson PS, Vogel TA, Landis GP, Grant NK, Jezek PA (1982) Rare-element-enriched ilmenite series ash-flow tuffs containing phenocrystic muscovite, andalusite and sillimanite. Macusani region, southeastern Peru. GSA Abstracts with Programs 14:577

    Google Scholar 

  • Noble DC, Vogel TA, Peterson PS, Landis GP, Grant NK, Jezek PA, McKee EH (1984) Rare-element enriched, S-type ash-flow tuffs containing phenocrysts of muscovite, andalusite and sillimanite, southeastern Peru. Geology 12:35–39

    Google Scholar 

  • Olesch M, Seifert F (1981) The restricted stability of osumilite under hydrous conditions in the system K2O-MgO-Al2O3-SiO2-H2O. Contrib Mineral Petrol 76:362–367

    Google Scholar 

  • Phillips GN, Wall VJ, Clemens JD (1981) Petrology of the Strathbogie batholith: a cordierite-bearing granite. Can Mineral 19:47–63

    Google Scholar 

  • Pichavant M, Manning DAC (1984) Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Phys Earth Planet Int 35:31–50

    Google Scholar 

  • Pichavant M, Valencia Herrera J, Boulmier S, Briqueu L, Joron JL, Juteau M, Marin L, Michard A, Sheppard SMF, Treuil M, Vernet M (1987a) The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In: Mysen BO (ed) Magmatic processes: physicochemical principles. Geochem Soc Special Publ 1:359–373

  • Pichavant M, Boher M, Stenger JF, Aissa M, Charoy B (1987b) Relations de phases des granites de Beauvoir entre 1 et 3 kbar en conditions de saturation en H2O. Geol Fr 2–3:77–86

    Google Scholar 

  • Pichavant M, Kontak DJ, Briqueu L, Valencia Herrera J, Clark AH (1988) The Miocene-Pliocene Macusani volcanics, SE Peru. II Geochemistry and origin of a felsic peraluminous magma. Contrib Mineral Petrol 100:325–338

    Google Scholar 

  • Pitcher WS, Atherton MP, Cobbing EJ, Beckinsale RD (1985) Magmatism at a Plate Edge: the Peruvian Andes. Wiley, New York, p 328

    Google Scholar 

  • Pouchou JL, Pichoir F (1984) Un nouveau modèle de calcul pour la microanalyse quantitative par spectrométrie de rayons X.I application à l'analyses d'échantillons homogènes. Rech Aerosp 3:167–192

    Google Scholar 

  • Power GM (1968) Chemical variation in tourmaline from southwest England. Mineral Mag 36:1078–1089

    Google Scholar 

  • Powers RE, Bohlen SR (1985) The role of synmetamorphic igneous rocks in the metamorphism and partial melting of metasediments, northwest Adirondacks. Contrib Mineral Petrol 90:401–409

    Google Scholar 

  • Price RC (1983) Geochemistry of a peraluminous granitoid suite from north-eastern Victoria, south-eastern Australia. Geochim Cosmochim Acta 47:31–42

    Google Scholar 

  • Robbins CS, Yoder HS (1962) Stability relations of dravite, a tourmaline. Carnegie Inst Washington Year Book 61:106–108

    Google Scholar 

  • Robie RA, Hemingway BS, Fischer JR (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv Bull 1452

  • Schenk K, Ambruster T (1985) Beidellite-nontronite, an alteration product of cordierite in the rhyolite from Torniella (Tuscany, Italy). N Jb Miner Mh 9:385–395

    Google Scholar 

  • Schleicher H, Lippolt HJ (1981) Magmatic muscovite in felsitic parts of rhyolites from southwest Germany. Contrib Mineral Petrol 78:220–224

    Google Scholar 

  • Schreyer WE, Hentschel O, Abraham K (1983) Osumilith in der Eifel und die Verwendung dieses Minerals als petrogenetischer Indikator. Tschermaks Min Petr Mitt 31:215–234

    Google Scholar 

  • Smith JV, Brown WL (1987) Feldspar Minerals. Springer, p 828

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Google Scholar 

  • Thompson JB Jr, Waldbaum DR (1969) Mixing properties of sanidine solid solutions. III Calculations based on two-phase data. Am Mineral 54:811–838

    Google Scholar 

  • Valencia Herrera J, Pichavant M, Esteyries C (1984) Le volcanisme ignimbritique peralumineux plio-quaternaire de la région de Macusani, Pérou. CR Acad Sci Paris 298:77–82

    Google Scholar 

  • Vielzeuf D (1983) The spinel and quartz associations in high grade xenoliths from Tallante (SE Spain) and their use in geothermometry and barometry. Contrib Mineral Petrol 82:301–311

    Google Scholar 

  • Wall VJ, Clemens JD, Clarke DB (1987) Models for granitoid evolution and source composition. J Geol 95:731–749

    Google Scholar 

  • Watson EB, Harrison TH (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Google Scholar 

  • Weber C, Pichavant M (1986) Plagioclase-liquid phase relations in the system Qz-Or-Ab-An-H2O at 3 kbar: towards a resolution of experimental difficulties. EOS 67:408

    Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophys 43:7–22

    Google Scholar 

  • White AJR, Clemens JD, Holloway JR, Silver LT, Chappell BW, Wall VJ (1986) S-type granites and their probable absence in southwestern North America. Geology 15:115–118

    Google Scholar 

  • Wickham SM (1987) Crustal anatexis and granite petrogenesis during low-pressure regional metamorphism: the Trois Seigneurs Massif, Pyrénées France. J Petrol 28:127–168

    Google Scholar 

  • Wyborn D, Chappell BW, Johnston RM (1981) Three S-type volcanic suites from the Lachlan fold belt, southeast Australia. J Geophys Res 86:10335–10348

    Google Scholar 

  • Zeck HP (1970) An erupted migmatite from Cerro de Hoyazo, SE Spain. Contrib Mineral Petrol 26:225–246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

CRPG Contribution n∘ 769

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichavant, M., Kontak, D.J., Herrera, J.V. et al. The Miocene-Pliocene Macusani Volcanics, SE Peru. Contr. Mineral. and Petrol. 100, 300–324 (1988). https://doi.org/10.1007/BF00379741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379741

Keywords

Navigation