Log in

The role of eclogite in the mantle heterogeneity at Cape Verde

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Cape Verde hotspot, like many other Ocean Island Basalt provinces, demonstrates isotopic heterogeneity on a 100–200 km scale. The heterogeneity is represented by the appearance of an EM1-like component at several of the southern islands and with a HIMU-like component present throughout the archipelago. Where the EM1-like component is absent, a local DMM-like component replaces the EM1-like component. Various source lithologies, including peridotite, pyroxenite and eclogite have been suggested to contribute to generation of these heterogeneities; however, attempts to quantify such contributions have been limited. We apply the minor elements in olivine approach (Sobolev et al. in Nature 434:590–597, 2005; Science, doi:10.1126/science.1138113, 2007), to determine and quantify the contributions of peridotite, pyroxenite and eclogite melts to the mantle heterogeneity observed at Cape Verde. Cores of olivine phenocrysts of the Cape Verde volcanics have low Mn/FeO and low Ni*FeO/MgO that deviate from the negative trend of the global array. The global array is defined by mixing between peridotite and pyroxenite, whereas the Cape Verde volcanics indicate contribution of an additional eclogite source. Eclogite melts escape reaction with peridotite either by efficient extraction in an area of poor mantle flow or by reaction of eclogite melts with peridotite, whereby an abundance of eclogite can seal off the melt from further reaction. Temporal trends of decreasing Mn/FeO indicate that the supply of eclogite melts is increasing. Modelling suggests the local DMM-like end-member is formed from a relatively peridotite-rich melt, while the EM1-like end-member has a closer affinity to a mixed peridotite–pyroxenite–eclogite melt. Notably the HIMU-like component ranges from pyroxenite–peridotite-rich melt to one with up to 77 % eclogite melt as a function of time, implying that sealing of melt pathways is becoming more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abouchami W, Hofmann AW, Galer SJG, Frey FA, Eisele J, Feigenson M (2005) Lead isotopes reveal bilateral asymmetry and vertical discontinuity in the Hawaiian mantle plume. Nature 434:851–856

    Article  Google Scholar 

  • Abratis M, Schmincke H-U, Hansteen TH (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci 91:562–582. doi:10.1007/s00531-002-0286-7

    Article  Google Scholar 

  • Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contrib Miner Petrol 152:1–17

    Article  Google Scholar 

  • Ali MY, Watts AB (2003) A seismic reflection profile study of lithospheric flexure in the vicinity of the Cape Verde Islands. J Geophys Res 108:2239–2263

    Article  Google Scholar 

  • Barker AK, Holm PM, Peate DW, Baker JA (2009) Geochemical stratigraphy of submarine lavas (3–5 Ma) from the Flamengos Valley, Santiago, Cape Verde. J Petrol 50:169–193. doi:10.1093/petrology/egn081

    Article  Google Scholar 

  • Barker AK, Holm PM, Peate DW, Baker JA (2010) A 5 million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago. Contrib Mineral Petrol 160:133–154. doi:10.1007/s00410-009-0470-x

    Article  Google Scholar 

  • Barker AK, Troll VR, Ellam RM, Hansteen TH, Harris C, Stillman CJ, Andersson A (2012) Magmatic evolution of the Cadamosto Seamount, Cape Verde: beyond the spatial extent of EM1. Contrib Mineral Petrol. doi:10.1007/s00410-011-0708-2

  • Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57–71. doi:10.1016/0009-2541(94)90121-X

    Article  Google Scholar 

  • Bonadiman C, Beccaluva L, Coltorti M, Siens F (2005) Kimberlite-like metasomatism and ‘Garnet signature’ in spinel-peridotite xenoliths from Sal, Cape Verde archipelago: relics of a subcontinental mantle domain within the Atlantic Ocean lithosphere? J Petrol 46:2465–2493

    Article  Google Scholar 

  • Bougault H, Hekinian R (1974) Rift valley in the Atlantic Ocean near 36 degrees 50′N; petrology and geochemistry of basalt rocks. Earth Planet Sci Lett 24(2):249–261. doi:10.1016/0012-821X(74)90103-4

    Article  Google Scholar 

  • Courtney RC, White RS (1986) Anomalous heat-flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle. Geophys J Royal Astr Soc 87:815–867

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 and genesis of alkalic ocean island basalts. J Petrol 48:2093–2124

    Article  Google Scholar 

  • Davies GR, Norry MJ, Gerlach DC, Cliff RA (1989) A combined chemical and Pb–Sr–Nd isotope study of the Azores and Cape Verde hot-spots: the geodynamic implications. In: Saunders AD, Norry MJ (eds) Magmatism in Ocean Basins, vol 42. Geological Society, London, Special Publications, pp 231–255

  • Deegan FM, Troll VR, Barker AK, Harris C, Chadwick JP, Carracedo JC, Delcamp A (2012) Crustal versus source processes recorded in dykes from the Northeast volcanic rift zone of Tenerife, Canary Islands. Chem Geol 334:324–344. doi:10.1016/j.chemgeo.2012.10.013

    Article  Google Scholar 

  • Doucelance R, Escrig S, Moriera M, Gariepy C, Kurz M (2003) Pb–Sr–He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochim et Cosmochim Acta 67:3717–3733

    Article  Google Scholar 

  • Eisele J, Abouchami W, Galer SJG, Hofmann AW (2003) The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem Geophys Geosyst 4:8710. doi:10.1029/2002GC000339

    Article  Google Scholar 

  • Escrig S, Doucelance R, Moreira M, Allégre C (2005) Os isotope systematics in Fogo Island: evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem Geol 219:93–113

    Article  Google Scholar 

  • Geist DJ, White WM, McBirney AR (1988) Plume–asthenosphere mixing beneath the Galapagos archipelago. Nature 333:657–660

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, Klügel A, van den Bogaard P, Bindeman I (2008) Geochemistry of a new enriched mantle type locality in the northern hemisphere: implications for the origin of the EM-1 source. Earth Planet Sci Lett 265:167–182

    Article  Google Scholar 

  • Gerlach DC, Cliff RA, Davies GR, Norry M, Hodgson N (1988) Magma sources of the Cape Verdes archipelago: isotopic and trace element constraints. Geochim et Cosmochim Acta 52:2979–2992

    Article  Google Scholar 

  • Gurenko AA, Hoernle KA, Hauff F, Schmincke H-U, Han D, Miura YN, Kaneoka I (2006) Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes. Chem Geol 233:75–112

    Article  Google Scholar 

  • Gurenko AA, Sobolev AV, Hoernle KA, Hauff F, Schminke H-U (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. Earth Planet Sci Lett 277:514–524. doi:10.1016/j.epsl.2008.11.013

    Article  Google Scholar 

  • Gurenko AA, Hoernle KA, Sobolev AV, Hauff F, Schminke H-U (2010a) Source components of the Gran Canaria (Canary Islands) shield stage magmas: evidence from olivine composition and Sr–Nd–Pb isotopes. Contrib Mineral Petrol 159:689–702. doi:10.1007/s00410-009-0448-8

    Article  Google Scholar 

  • Gurenko AA, Bindeman IN, Chaussidon M (2010b) Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: insights from olivine phenocrysts. Contrib Mineral Petrol. doi:10.1007/s00410-010-0600-5

  • Hart SR (1984) A large-scale isotopic anomaly in the southern hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146. doi:10.1093/petrology/egq075

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43:1857–1883

    Article  Google Scholar 

  • Hildner E, Klügel A, Hauff F (2011) Magma storage and ascent during the 1995 eruption of Fogo, Cape Verde archipelago. Contrib Mineral Petrol. doi:10.1007/s00410-011-0623-6

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressure; determination of composition of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci Lett 114:447–489

    Article  Google Scholar 

  • Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481–484

    Article  Google Scholar 

  • Hoernle K, Tilton GR (1991) Sr–Nd–Pb isotope data for Fuerteventura (Canary Islands) basal complex and subaerial volcanics: application to magma genesis and evolution. Schweiz Mineral Petrogr Mitt 71:5–21

    Google Scholar 

  • Hoernle K, Tilton G, Schmincke H-U (1991) Sr–Nd–Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett 106:44–63

    Article  Google Scholar 

  • Hoernle K, Zhang Y-S, Graham D (1995) Seismic and geochemical evidence for large- scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39

    Article  Google Scholar 

  • Hoernle K, Werner R, Morgan JP, Garbe-Schönberg D, Bryce J, Mrazek J (2000) Existence of complex spatial zonation in the Galápagos plume for at least 14 m.y. Geology 28:435–438

    Article  Google Scholar 

  • Holm PM, Wilson JR, Christensen BP, Hansen L, Hansen SL, Hein KH, Mortensen AK, Pedersen R, Plesner S, Runge MK (2006) Sampling the Cape Verde mantle plume: evolution of melt compositions on Santo Antão, Cape Verde Islands. J Petrol 47:145–189

    Article  Google Scholar 

  • Holm PM, Grandvuinet T, Friis J, Wilson JR, Barker AK, Plesner S (2008) An 40Ar–39Ar study of the Cape Verde hotspot: temporal evolution in a semi-stationary plate environment. J Geophys Res B08201:2007J. doi:10.1029/B005339

    Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock. Earth Planet Sci Lett 164:387–406

    Article  Google Scholar 

  • Kloeck W, Palme H (1988) Partitioning of siderophile and chalcophile elements between sulfide, olivine, and glass in a naturally reduced basalt from Disko Island, Greenland. In: Ryder G (ed) Proceedings of the Lunar and planetary science conference, vol 18. Pergamon, New York, pp 471–483

  • Kogiso T, Hirschmann MM, Frost DJ (2003) High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett 216:603–617. doi:10.1016/S0012-821X(03)00538-7

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Pertermann M (2004a) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 45:2407–2422. doi:10.1093/petrology/egh057

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Reiners PW (2004b) Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim Cosmochim Acta 68:345–360

    Article  Google Scholar 

  • Kokfelt TF, Holm PM, Hawkesworth CJ, Peate DW (1998) A lithospheric mantle source for the Cape Verde Island magmatism: trace element and isotopic evidence from the Island of Fogo. Mineral Mag 62A:801–802

    Article  Google Scholar 

  • Le Bas MJ (1989) Nephelinitic and basanitic rocks. J Petrol 30:1299–1312

    Article  Google Scholar 

  • Lundstrom CC, Hoernle K, Gill J (2003) U-series disequilibria in volcanic rocks from the Canary Islands: plume versus lithospheric melting. Geochim Cosmochim Acta 67:4153–4177

    Article  Google Scholar 

  • Martins S, Mata J, Munhá J, Mendes MH, Maerschalk C, Caldeira R, Mattielli N (2009) Chemical and mineralogical evidence of the occurrence of mantle metasomatism by carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Mineral Petrol. doi:10.1007/s00710-009-0078-x

  • Millet M-A, Doucelance R, Schiano P, David K, Bosq C (2008) Mantle plume heterogeneity versus shallow-level interactions: a case study, the São Nicolau Island, Cape Verde archipelago. J Volcanol Geotherm Res 176:265–276. doi:10.1016/jjvolgeores.2008.04.003

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 30:338–343

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem Geophys Geosyst 7:Q11007. doi:10.1029/2006GC001248

    Article  Google Scholar 

  • Mourão C, Mata J, Doucelance R, Maderia J, Millet M-A, Moreria M (2012) Geochemical temporal evolution of Brava Island magmatism: constraints on the variability of Cape Verde mantle sources and on carbonatite–silicate magma link. Chem Geol 334:44–61

    Article  Google Scholar 

  • Neumann ER, Sorensen VB, Simonsen SL, Johnsen K (2000) Gabbroic xenoliths from La Palma, Tenerife and Lanzarote, Canary Islands: evidence for reactions between ma®c alkaline Canary Islands melts and old oceanic crust. J Volcanol Geotherm Res 103:313–342

    Article  Google Scholar 

  • Ogg JG (1995) Magnetic polarity time scale of the phanerozoic. In: Ahrens TJ (ed) Global earth physics: a handbook of physical constants, vol 1. AGU Ref. Shelf, Washington, DC, pp 240–270

  • Pertermann M, Hirschmann MM (2002) Trace-element partitioning between vacancy-rich eclogite clinopyroxene and silicate melt. Am Mineral 87:1365–1376

    Google Scholar 

  • Pim J, Peirce C, Watts AB, Grevemeyer L, Krabbenhoeft A (2008) Crustal structure and origin of the Cape Verde rise. Earth Planet Sci Lett 272:422–428

    Article  Google Scholar 

  • Prytulak J, Elliott T (2007) TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett 263:388–403

    Article  Google Scholar 

  • Regelous M, Hofmann AW, Abouchami W, Galer SJG (2003) Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J Petrol 44:113–140

    Article  Google Scholar 

  • Ryabchikov ID, Ntaflos T, Kurat G, Kogarko LN (1995) Glass-bearing xenoliths from Cape Verde: evidence for a hot rising mantle jet. Mineral Petrol 55:217–237

    Article  Google Scholar 

  • Simonsen SL, Neumann E-R, Seim K (2000) Sr–Nd–Pb isotope and trace-element geochemistry evidence for a young HIMU source and assimilation at Tenerife (Canary Island). J Volcanol Geotherm Res 103:299–312

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Sobolev AV, Hofman AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rochell A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in source of mantle-derived melts. Science. doi:10.1126/science.1138113

  • Stracke A, Bourdon B (2009) The importance of melt extraction for tracing mantle heterogeneity. Geochim Cosmochim Acta 73:218–238. doi:10.1016/j.gca.2008.10.015

    Article  Google Scholar 

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6:Q05007. doi:10.1029/2004GC000824

    Article  Google Scholar 

  • Thirlwall MF (1997) Pb isotopic and elemental evidence for OIB derivation from young HIMU mantle. Chem Geol 139:51–74

    Article  Google Scholar 

  • Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim et Cosmochim Acta 68:361–386

    Article  Google Scholar 

  • Widom E, Hoernle KA, Shirey SB, Schmincke H-U (1999) Os isotope systematics in the Canary Islands and Madeira: lithospheric contamination and mantle plume signatures. J Petrol 40:297–314

    Article  Google Scholar 

  • Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt 78:243

    Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgments

Our thanks go to Alfons Berger for analytical advice and assistance. We are grateful for discussions with Kaj Hoernle, Thor Hansteen, Alexander Sobolev, Andrey Gurenko, Catherine Chauvel and Hans-Ulrich Schmincke, whose input greatly improved the manuscript. This research was supported by the Swedish National Research Council (Vetenskaprådet) in the form of Grant (Dnr: 2009-4316) to Barker and Troll.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Barker.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barker, A.K., Holm, P.M. & Troll, V.R. The role of eclogite in the mantle heterogeneity at Cape Verde. Contrib Mineral Petrol 168, 1052 (2014). https://doi.org/10.1007/s00410-014-1052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1052-0

Keywords

Navigation