Log in

An exact solution of the nonlinear Poisson-Boltzmann equation in parallel-plate geometry

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The Poisson-Boltzmann (PB) equation is a fundamental theoretical tool in understanding electric double layers (EDLs) at solid-liquid interfaces. Because of the intrinsic nonlinearity, finding exact analytical solutions of this equation is very difficult, and hitherto only very few exact analytical solutions are known. In this work, a new explicit exact solution for the nonlinear PB equation in parallel-plate geometry is derived in terms of Jacobi elliptic functions. A comparison of the sought solution with the finite element numerical simulation ensures correctness of the solution. We further found that the new solution is numerically consistent with the two existing solutions derived by Behrens & Borkovec (Phys. Rev. E 60:7040, [25]) and Johannessen (J. Math. Chem. 52:504, [36]) in spite of different expressions of the three solutions. This suggests equivalence of the three solutions. In addition, based upon the new solution, we suggest a method of determining the electrostatic potential profile inside the EDL with the experimental data of disjoining pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Kato M (1995) Numerical analysis of the Nernst-Planck-Poisson system. J Theor Biol 177:299–304

    Article  Google Scholar 

  2. Moya AA (2015) The differential capacitance of the electric double layer in the diffusion boundary layer of ion-exchange membrane systems. Electrochim Acta 178:249–258

    Article  CAS  Google Scholar 

  3. Biesheuvel PM (2001) Simplifications of the Poisson-Boltzmann equation for the electrostatic interaction of close hydrophilic surfaces in water. J Colloid Interface Sci 238:362–370

    Article  CAS  Google Scholar 

  4. Fogolari F, Brigo A, Molinari H (2002) The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recognit 15:377–392

    Article  CAS  Google Scholar 

  5. **e D (2014) New solution decomposition and minimization schemes for Poisson–Boltzmann equation in calculation of biomolecular electrostatics. J Comput Phys 275:294–309

    Article  Google Scholar 

  6. Lim J, Whitcomb J, Boyd J, Varghese J (2007) Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified stern layer. J Colloid Interface Sci 305:159–174

    Article  CAS  Google Scholar 

  7. Borukhov I, Andelman D, Orland H (2000) Adsorption of large ions from an electrolyte solution: a modified Poisson–Boltzmann equation. Electrochim Acta 46:221–229

    Article  CAS  Google Scholar 

  8. Murray H (2009) Analytic resolution of Poisson–Boltzmann equation in nanometric semiconductor junctions. Solid State Electron 53:107–116

    Article  CAS  Google Scholar 

  9. Majorana A, Pidatella RM (2001) A finite difference scheme solving the Boltzmann–Poisson system for semiconductor devices. J Comput Phys 174:649–668

    Article  CAS  Google Scholar 

  10. Xuan X, Li D (2005) Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. J Colloid Interface Sci 289:291–303

    Article  CAS  Google Scholar 

  11. Çetin B, Travis BE, Li D (2008) Analysis of the electro-viscous effects on pressure-driven liquid flow in a two-section heterogeneous microchannel. Electrochim Acta 54:660–664

    Article  Google Scholar 

  12. Ohshima H (2015) Electroosmotic flow on an arbitrarily charged planar surface. Colloid Polymer Sci 293:1401–1408

    Article  CAS  Google Scholar 

  13. Gongadze E, Velikonja A, Perutkova Š, Kramar P, Maček-Lebar A, Kralj-Iglič V, Iglič A (2014) Ions and water molecules in an electrolyte solution in contact with charged and dipolar surfaces. Electrochim Acta 126:42–60

    Article  CAS  Google Scholar 

  14. Ohshima H (2016) An approximate analytic solution to the modified Poisson-Boltzmann equation: effects of ionic size. Colloid Polymer Sci 294:2121–2125

    Article  CAS  Google Scholar 

  15. Bazant MZ, Kilic MS, Storey BD, Ajdari A (2009) Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv Colloid Interf Sci 152:48–88

    Article  CAS  Google Scholar 

  16. Torrie G, Valleau J (1980) Electrical double layers. I. Monte Carlo study of a uniformly charged surface. J Chem Phys 73:5807–5816

    Article  CAS  Google Scholar 

  17. Qiao R, Aluru N (2003) Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J Chem Phys 118:4692–4701

    Article  CAS  Google Scholar 

  18. Freund JB (2002) Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. J Chem Phys 116:2194–2200

    Article  CAS  Google Scholar 

  19. Rosenfeld Y (1993) Free energy model for inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J Chem Phys 98:8126–8148

    Article  CAS  Google Scholar 

  20. D-e J, Meng D, Wu J (2011) Density functional theory for differential capacitance of planar electric double layers in ionic liquids. Chem Phys Lett 504:153–158

    Article  Google Scholar 

  21. Gouy LG (1910) Sur la constitution de la charge electrique a la surface d’un electrolyte. J Phys Theor Appl 9:457–468

    Article  CAS  Google Scholar 

  22. Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25:475–481

    Article  Google Scholar 

  23. Andrietti F, Peres A, Pezzotta R (1976) Exact solution of the unidimensional Poisson-Boltzmann equation for a 1:2 (2:1) electrolyte. Biophys J 16:1121–1124

    Article  CAS  Google Scholar 

  24. Grahame DC (1953) Theory of the faradaic admittance. II. Analysis of the current-interrupter method. J Chem Phys 21:1054–1060

    Article  CAS  Google Scholar 

  25. Behrens SH, Borkovec M (1999) Exact Poisson-Boltzmann solution for the interaction of dissimilar charge-regulating surfaces. Phys Rev E 60:7040–7048

    Article  CAS  Google Scholar 

  26. Russel WB, Saville DA, Schowalter WR (1989) Colloidal Dispersion. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  CAS  Google Scholar 

  28. Zhao C, Yang C (2012) Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid Nanofluid 13:179–203

    Article  Google Scholar 

  29. Andelman D (1995) Electrostatic properties of membranes: the Poisson–Boltzmann theory. Handbook of biological physics. Elsevier, Amsterdam

    Google Scholar 

  30. McCormack D, Carnie SL, Chan DYC (1995) Calculations of electric double-layer force and interaction free energy between dissimilar surfaces. J Colloid Interface Sci 169:177–196

    Article  CAS  Google Scholar 

  31. **ng X (2011) Poisson-Boltzmann theory for two parallel uniformly charged plates. Phys Rev E 83:041410

    Article  Google Scholar 

  32. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  33. Polat M, Polat H (2010) Analytical solution of Poisson–Boltzmann equation for interacting plates of arbitrary potentials and same sign. J Colloid Interface Sci 341:178–185

    Article  CAS  Google Scholar 

  34. Honig EP, Mul PM (1971) Tables and equations of the diffuse double layer repulsion at constant potential and at constant charge. J Colloid Interface Sci 36:258–272

    Article  CAS  Google Scholar 

  35. Usui S (2004) Interaction between dissimilar double layers with like signs under charge regulation on the basis of the Gouy–chapman–stern–Grahame model. J Colloid Interface Sci 280:113–119

    Article  CAS  Google Scholar 

  36. Johannessen K (2012) A nonlinear differential equation related to the Jacobi elliptic functions. Int J Differential Equ 2012:412569

    Google Scholar 

  37. Johannessen K (2014) The exact solution to the one-dimensional Poisson–Boltzmann equation with asymmetric boundary conditions. J Math Chem 52:504–507

    Article  CAS  Google Scholar 

  38. Ma HC, Keh HJ (2006) Diffusioosmosis of electrolyte solutions in a fine capillary slit. J Colloid Interface Sci 298:476–486

    Article  CAS  Google Scholar 

  39. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York

    Google Scholar 

  40. Shubin VE, Kékicheff P (1993) Electrical double layer structure revisited via a surface force apparatus: Mica interfaces in Lithium nitrate solutions. J Colloid Interface Sci 155:108–123

    Article  CAS  Google Scholar 

  41. Israelachvili J, Min Y, Akbulut M, Alig A, Carver G, Greene W, Kristiansen K, Meyer E, Pesika N, Rosenberg K, Zeng H (2010) Recent advances in the surface forces apparatus (SFA) technique. Rep Prog Phys 73:036601

    Article  Google Scholar 

  42. Ducker WA, Senden TJ, Pashley RM (1992) Measurement of forces in liquids using a force microscope. Langmuir 8:1831–1836

    Article  CAS  Google Scholar 

  43. Montes Ruiz-Cabello FJ, Trefalt G, Maroni P, Borkovec M (2014) Electric double-layer potentials and surface regulation properties measured by colloidal-probe atomic force microscopy. Phys Rev E 90:012301

    Article  Google Scholar 

  44. Zhao C, Ebeling D, Siretanu I, van den Ende D, Mugele F (2015) Extracting local surface charges and charge regulation behavior from atomic force microscopy measurements at heterogeneous solid-electrolyte interfaces. Nanoscale 7:16298–16311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support from the National Key Research and Development Program of China (No. 2017YFB0603500) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.51721004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunlu Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, Q., Zeng, M. et al. An exact solution of the nonlinear Poisson-Boltzmann equation in parallel-plate geometry. Colloid Polym Sci 296, 1917–1923 (2018). https://doi.org/10.1007/s00396-018-4394-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4394-8

Keywords

Navigation