Log in

The allometry of rodent intestines

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

This study examined the allometry of the small intestine, caecum, colon and large intestine of rodents (n = 51) using a phylogenetically informed approach. Strong phylogenetic signal was detected in the data for the caecum, colon and large intestine, but not for the small intestine. Most of the phylogenetic signal could be attributed to clade effects associated with herbivorous versus omnivorous rodents. The herbivorous rodents have longer caecums, colons and large intestines, but their small intestines, with the exception of the desert otomyine rodents, are no different to those of omnivorous rodents. Desert otomyine rodents have significantly shorter small intestines than all other rodents, reflecting a possible habitat effect and providing a partial explanation for the low basal metabolic rates of small desert mammals. However, the desert otomyines do not have shorter colons or large intestines, challenging claims for adaptation to water retention in arid environments. Data for the Arvicolidae revealed significantly larger caecums and colons, and hence longer large intestines, with no compensatory reduction in the length of the small intestine, which may explain how the smallest mammalian herbivores manage to meet the demands of a very high mass-specific metabolic rate. This study provides phylogenetically corrected allometries suitable for future prediction testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol 36:199–221

    Article  Google Scholar 

  • Björnhag G (1994) Adaptations in the large intestine allowing small animals to eat fibrous foods. In: Chivers DJ, Langer P (eds) The digestive system in mammals: food, form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioural traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Borkowska A (1995) Seasonal changes in gut morphology in the striped field mouse (Apodemus agrarius). Can J Zool 73:1095–1099

    Article  Google Scholar 

  • Brody S (1945) Bioenergetics and growth. Reinhold, New York

    Google Scholar 

  • Brown JH, Marquet PA, Taper ML (1993) Evolution of body size: consequences of an energetic definition of fitness. Am Nat 142:573–584

    Article  CAS  PubMed  Google Scholar 

  • Cant JP, McBride BW, Croom WJ (1996) The regulation of intestinal metabolism and its impact on whole animal energetics. J Anim Sci 74:2541–2553

    CAS  PubMed  Google Scholar 

  • Cork SJ (1994) Digestive constraints on dietary scope in small and moderately small mammals: how much do we really understand? In: Chivers DJ, Langer P (eds) The digestive system in mammals. Cambridge University Press, Cambridge

    Google Scholar 

  • del Valle JC, Busch C, Mananes AAL (2006a) Phenotypic plasticity in response to low quality diet in the South American omnivorous rodent Akodon azarae (Rodentia:Sigmodontinae). Comp Biochem Physiol A 145:397–405

    Article  Google Scholar 

  • del Valle JC, Mananes AAL, Busch C (2006b) Seasonal changes in body composition of Ctenomys talarum (Rodentia:Octodontidae): an herbivore subterranean rodent. Comp Biochem Physiol A 145:20–25

    Article  Google Scholar 

  • Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672

    Article  Google Scholar 

  • Derting TL, Hornung CA (2003) Energy demand, diet quality, and central processing organs in wild white-footed mice (Peromyscus leucopus). J Mammal 84:1381–1398

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Google Scholar 

  • Ford F (2006) A splitting headache: relationships and generic boundaries among Australian murids. Biol J Linn Soc 89:117–138

    Article  Google Scholar 

  • Garland T, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–365

    Article  Google Scholar 

  • Garland T, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’; variation in the intra- and interspecific scaling of metabolic rate in mammals. Biol Rev 80:611–662

    Article  PubMed  Google Scholar 

  • Green DA, Millar JS (1987) Changes in gut dimensions and capacity of Peromyscus maniculatus relative to diet quality and energy needs. Can J Zool 65:2159–2162

    Article  Google Scholar 

  • Gross JE, Wang Z, Wunder BA (1985) Effects of food quality and energy needs: changes in gut morphology and capacity of Microtus ochrogaster. J Mammal 66:661–667

    Article  Google Scholar 

  • Hansson L, Jaarola M (1989) Body size related to cyclicity in microtines: dominance behavior or digestive efficiency. Oikos 55:356–364

    Article  Google Scholar 

  • Herreid CF, Kessel B (1967) Thermal conductance in birds and mammals. Comp Biochem Physiol 21:405–414

    Article  PubMed  Google Scholar 

  • Heusner AA (1982) Energy metabolism and body size. I. Is the 0.75 mass exponent of the Kleiber equation a statistical artifact? Respir Physiol 48:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hume ID (1994) Gut morphology, body size and digestive performance in rodents. In: Chivers DJ, Langer P (eds) The digestive system in mammals: food, form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Hume ID, Bieglbock C, Ruf T, Frey-Roos F, Bruns U, Arnold W (2002) Seasonal changes in morphology and function of the gastrointestinal tract of free-living alpine marmots (Marmota marmota). J Comp Physiol B 172:197–207

    Article  CAS  PubMed  Google Scholar 

  • Jackson TP, Spinks AC (1998) Gut morphology of the Otomyine rodents: an arid–mesic comparison. South Afr J Zool 33:236–240

    Google Scholar 

  • Jansa SA, Weksler M (2004) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol Phyl Evol 31:256–276

    Article  CAS  Google Scholar 

  • Johnson JL, McBee RH (1967) The porcupine cecal fermentation. J Nutr 91:540–546

    CAS  PubMed  Google Scholar 

  • Justice KE, Smith FA (1992) A model of dietary fiber utilization by small mammalian herbivores, with empirical results for Neotoma. Am Nat 139:398–416

    Article  Google Scholar 

  • Kleiber M (1932) Body size and animal metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  • Knight MH, Knight-Eloff AK (1987) Digestive tract of the African giant rat (Cricetomys gambianus). J Zool 213:7–22

    Article  Google Scholar 

  • Kotze SH, Van der Merwe EL, O’Riain MJ (2006) The topography and gross anatomy of the gastrointestinal tract of the Cape dune mole-rat (Bathyergus suillus). Anat Histol Embryol J Vet Med C 35:259–264

    Article  CAS  Google Scholar 

  • Lavin SR, Karasov WH, Ives AR, Middleton KM, Garland T (2008) Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach. Physiol Biochem Zool 81:526–550

    Article  PubMed  Google Scholar 

  • Lecompte E, Granjon L, Denys C (2002) The phylogeny of the Praomys complex (Rodentia:Muridae) and its phylogeographic implications. J Zool Syst Evol Res 40:8–25

    Article  Google Scholar 

  • Lee WB, Houston DC (1993a) The effect of diet quality on gut anatomy in British voles (Microtinae). J Comp Physiol B 163:337–339

    Article  CAS  PubMed  Google Scholar 

  • Lee WB, Houston DC (1993b) The role of coprophagy in digestion in voles (Microtus agrestis and Clethrionomys glareolus). Funct Ecol 7:427–432

    Article  Google Scholar 

  • Loeb SC, Schwab RG, Demment MW (1991) Responses of pocket gophers (Thomomys bottae) to changes in diet quality. Oecology 86:542–551

    Article  Google Scholar 

  • Lovegrove BG (1991) The evolution of eusociality in mole rats (Bathyergidae): a question of risks, numbers, and costs. Behav Ecol Sociobiol 28:37–45

    Article  Google Scholar 

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2003) The influence of climate on the basal metabolic rate of small mammals: a slow–fast metabolic continuum. J Comp Physiol B 173:87–112

    CAS  PubMed  Google Scholar 

  • Lovegrove BG (2005) Seasonal thermoregulatory responses in mammals. J Comp Physiol B 175:231–247

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2006) The power of fitness in mammals: perspectives from the African slipstream. Physiol Biochem Zool 79:224–236

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2008) Age at first reproduction and growth rate are independent of basal metabolic rate in mammals. J Comp Physiol B 179:391–401

    Article  PubMed  Google Scholar 

  • McNab BK (1980) On estimating thermal conductance in endotherms. Physiol Zool 53:145–156

    Google Scholar 

  • McNab BK (1983) Energetics, body size, and the limits to endothermy. J Zool Lond 199:1–29

    Article  Google Scholar 

  • McNab BK (1992) The comparative energetics of rigid endothermy: the Arvicolidae. J Zool Lond 227:585–606

    Article  Google Scholar 

  • McWilliams SR, Karasov WH (2001) Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comp Biochem Physiol A 128:579–593

    CAS  Google Scholar 

  • Mezhzherin VA (1964) Dehnel’s phenomenon and its possible explanation. Acta Theriol 8:95–114

    Google Scholar 

  • Michaux J, Catzeflis F (2000) The bushlike radiation of muroid rodents is exemplified by the molecular phylogeny of the LCAT nuclear gene. Mol Phylogenet Evol 17:280–293

    Article  CAS  PubMed  Google Scholar 

  • Michaux J, Reyes A, Catzeflis F (2001) Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Mol Biol Evol 18:2017–2031

    CAS  PubMed  Google Scholar 

  • Murray BR, Hume ID, Dickman CR (1995) Digestive tract characteristics of the spinifex hop**-mouse, Notomys alexis and the sandy inland mouse, Pseudomys hermannsburgensis in relation to diet. Aust Mammal 18:93–97

    Google Scholar 

  • Naya DE (2008) Gut size flexibility in rodents: what we know, and don’t know, after a century of research. Rev Chilena Hist Nat 81:599–612

    Google Scholar 

  • Naya DE, Bozinovic F, Karasov WH (2008) Latitudinal trends in digestive flexibility: testing the climatic variability hypothesis with data on the intestinal length of rodents. Am Nat 172:E122–E134

    Article  PubMed  Google Scholar 

  • Norrie MB, Millar JS (1990) Food resources and reproduction in 4 microtine rodents. Can J Zool 68:641–650

    Article  Google Scholar 

  • Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Pagel M (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442

    Article  Google Scholar 

  • Perrin MR, Curtis BA (1980) Comparative morphology of the digestive system of 19 species of Southern African myomorph rodents in relation to diet and evolution. South Afr J Zool 15:22–33

    Google Scholar 

  • Rezende EL, Bozinovic F, Garland T (2004) Climatic adaptation and the evolution of basal and maximum rates of metabolism in rodents. Evolution 58:1361–1374

    PubMed  Google Scholar 

  • Rinderknecht A, Blanco RE (2008) The largest fossil rodent. Proc R Soc B 275:923–928

    Article  PubMed  Google Scholar 

  • Robovsky J, Ricankova V, Zrzavy J (2008) Phylogeny of Arvicolinae (Mammalia, Cricetidae): utility of morphological and molecular data sets in a recently radiating clade. Zool Scr 37:571–590

    Article  Google Scholar 

  • Savage VM, Gillooly JF, Woodruff WH, West GB, Allen AP, Enquist BJ, Brown JH (2004) The predominance of quarter-power scaling in biology. Funct Ecol 18:257–282

    Article  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Google Scholar 

  • Scholander PF, Hock R, Walters V, Irving L (1950) Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol Bull 99:259–271

    Article  CAS  PubMed  Google Scholar 

  • Schwaibold U, Pillay N (2003) The gut morphology of the African ice rat, Otomys sloggetti robertsi, shows adaptations to cold environments and sex-specific seasonal variation. J Comp Physiol B 173:653–659

    Article  CAS  PubMed  Google Scholar 

  • Skinner JD, Smithers RHN (1990) The mammals of the southern African subregion. University of Pretoria, Pretoria

    Google Scholar 

  • Snipes RL (1997) Intestinal absorptive surface in mammals of different sizes. Adv Anat Embryol Cell Biol 138:1–88

    Google Scholar 

  • Song ZG, Wang DH (2006) Basal metabolic rate and organ size in Brandt’s voles (Lasiopodomys brandtii): effects of photoperiod, temperature and diet quality. Physiol Behav 89:704–710

    Article  CAS  PubMed  Google Scholar 

  • Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53:533–553

    Article  PubMed  Google Scholar 

  • Taylor CR, Schmidt-Nielsen K, Raab JL (1970) Scaling of energetic cost of running to body size in mammals. Am J Physiol 219:1104–1107

    CAS  PubMed  Google Scholar 

  • Taylor PJ, Denys C, Mukerjee M (2004) Phylogeny of the African murid tribe Otomyini (Rodentia), based on morphological and allozyme evidence. Zool Scr 33:389–402

    Article  Google Scholar 

  • van Jaarsveld AS, Knight-Eloff AK (1984) Digestion in the porcupine Hystrix africaeaustralis. S Afr J Zool 19:109–112

    Google Scholar 

  • Wang DH, Pei YX, Yang JC, Wang ZW (2003) Digestive tract morphology and food habits in six species of rodents. Folia Zool 52:51–55

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  • White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass 2/3. Proc Natl Acad Sci (USA) 100:4046–4049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by research incentive grants from the NRF and the University of KwaZulu-Natal. I am grateful to Ian Hume for pointing me to various data sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry G. Lovegrove.

Additional information

Communicated by G. Heldmaier.

Appendices

Appendix 1

See Table 6.

Table 6 Log10 body mass (g) and linear dimensions (mm) of the small intestine, caecum, colon and large intestine of 51 species of rodents

Appendix 2

Figure 6.

Fig. 6
figure 6

The working phylogeny of 51 species of rodents. Omnivorous species are indicated with black tip branches, whereas herbivorous species are indicated with grey tip branches. Branch lengths follow Pagel’s (1992) arbitrary method

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovegrove, B.G. The allometry of rodent intestines. J Comp Physiol B 180, 741–755 (2010). https://doi.org/10.1007/s00360-009-0437-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0437-2

Keywords

Navigation