Log in

Matrix-Variate Hidden Markov Regression Models: Fixed and Random Covariates

  • Special Issue: IFCS 2022
  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

Two families of matrix-variate hidden Markov regression models (MV-HMRMs) are here introduced. The distinction between them relies on the role of the covariates, which can be treated as fixed or random. Parsimony is achieved by using the eigen-decomposition of the components’ covariance matrices. This generates a different number of parsimonious models between the two families: 98 MV-HMRMs with fixed covariates and 9604 MV-HMRMs with random covariates. ECM algorithms are discussed for parameter estimation and, because of the high number of parsimonious models, convenient initialization, and fitting strategies are proposed. Our models are first applied to simulated data, and then to a four-way real dataset concerning the relationship between unemployment and labor force participation in the Italian provinces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code Availability

The code, examples of simulated analyses, and the real dataset used in this manuscript are publicly available at https://github.com/danieletomarchio/Parsimonious-MV-HMRMs-with-fixed-and-random-covariates.

References

  • Altman, R. M., & Petkau, A. J. (2005). Application of hidden Markov models to multiple sclerosis lesion count data. Statistics in Medicine, 24(15), 2335–2344.

    Article  MathSciNet  Google Scholar 

  • Altuzarra, A., Gálvez, Gálvez. C., & González, Flores A. (2019). Unemployment and labour force participation in Spain. Applied Economics Letters, 26(5), 345–350.

    Article  Google Scholar 

  • Apergis, N., & Arisoy, I. (2017). Unemployment and labor force participation across the US states: new evidence from panel data. SPOUDAI-Journal of Economics and Business, 67(4), 45–84.

    Google Scholar 

  • Bacri, T., Berentsen, G. D., Bulla, J., et al. (2022). A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using template model builder. Biometrical Journal, 64(7), 1260–1288.

    Article  MathSciNet  Google Scholar 

  • Bartolucci, F., & Farcomeni, A. (2015). A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates. Biometrics, 71(1), 80–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Bartolucci, F., Lupparelli, M., & Montanari, G. E. (2009). Latent Markov model for longitudinal binary data: an application to the performance evaluation of nursing homes. The Annals of Applied Statistics, 3(2), 611–636.

    Article  MathSciNet  MATH  Google Scholar 

  • Bartolucci, F., Farcomeni, A., & Pennoni, F. (2012). Latent Markov models for longitudinal data. CRC Press.

    Book  MATH  Google Scholar 

  • Baum, L. E., Petrie, T., Soules, G., et al. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41(1), 164–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Biernacki, C., Celeux, G., & Govaert, G. (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Computational Statistics and Data Analysis, 41, 561–575.

    Article  MathSciNet  MATH  Google Scholar 

  • Bulla J. (2011). Hidden Markov models with t components. increased persistence and other aspects. Quantitative Finance, 11(3), 459–475

  • Dang U. J., & McNicholas P. D. (2015). Families of parsimonious finite mixtures of regression models. In: Morlini I., Minerva T., Vichi M. (eds) advances in statistical models for data analysis. studies in classification, data analysis, and knowledge organization. Springer, pp. 73–84

  • Dang, U. J., Browne, R. P., & McNicholas, P. D. (2015). Mixtures of multivariate power exponential distributions. Biometrics, 71(4), 1081–1089.

    Article  MathSciNet  MATH  Google Scholar 

  • Dang, U. J., Punzo, A., McNicholas, P. D., et al. (2017). Multivariate response and parsimony for Gaussian cluster-weighted models. Journal of Classification, 34, 4–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1), 1–22.

    MathSciNet  MATH  Google Scholar 

  • Di Mari, R., Oberski, D. L., & Vermunt, J. K. (2016). Bias-adjusted three-step latent Markov modeling with covariates. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 649–660.

    Article  MathSciNet  Google Scholar 

  • Doğru, F. Z., Bulut, Y. M., & Arslan, O. (2016). Finite mixtures of matrix variate t distributions. Gazi University Journal of Science, 29(2), 335–341.

    Google Scholar 

  • European Parliament and Council. (2019). Regulation (EU) 2019/1700. Official Journal of the European Union (261), 1–32. http://data.europa.eu/eli/reg/2019/1700/oj

  • Farcomeni, A., & Punzo, A. (2020). Robust model-based clustering with mild and gross outliers. Test, 29, 989–1007.

    Article  MathSciNet  MATH  Google Scholar 

  • Fraley, C., & Raftery, A. E. (2003). Enhanced model-based clustering, density estimation, and discriminant analysis software: Mclust. Journal of Classification, 20(2), 263–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Gallaugher, M. P., & McNicholas, P. D. (2018). Finite mixtures of skewed matrix variate distributions. Pattern Recognition, 80, 83–93.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  MATH  Google Scholar 

  • Ingrassia, S., Minotti, S. C., & Vittadini, G. (2012). Local statistical modeling via a cluster-weighted approach with elliptical distributions. Journal of classification, 29, 363–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Kakinaka, M., & Miyamoto, H. (2012). Unemployment and labour force participation in Japan. Applied Economics Letters, 19(11), 1039–1043.

    Article  Google Scholar 

  • Koski T. (2001). Hidden Markov models for bioinformatics, vol 2. Springer Science & Business Media

  • Lagona, F., Maruotti, A., & Picone, M. (2011). A non-homogeneous hidden Markov model for the analysis of multi-pollutant exceedances data (pp. 207–222). Theory and Applications: Hidden Markov Models.

    Google Scholar 

  • Lagona, F., Jdanov, D., & Shkolnikova, M. (2014). Latent time-varying factors in longitudinal analysis: a linear mixed hidden Markov model for heart rates. Statistics in Medicine, 33(23), 4116–4134.

    Article  MathSciNet  Google Scholar 

  • Langrock, R., Kneib, T., Glennie, R., et al. (2017). Markov-switching generalized additive models. Statistics and Computing, 27, 259–270.

    Article  MathSciNet  MATH  Google Scholar 

  • Maruotti, A. (2011). Mixed hidden Markov models for longitudinal data: an overview. International Statistical Review, 79(3), 427–454.

    Article  MATH  Google Scholar 

  • Maruotti, A. (2014). Robust fitting of hidden Markov regression models under a longitudinal setting. Journal of Statistical Computation and Simulation, 84(8), 1728–1747.

    Article  MathSciNet  MATH  Google Scholar 

  • Maruotti, A., & Punzo, A. (2017). Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers. Computational Statistics & Data Analysis, 113, 475–496.

    Article  MathSciNet  MATH  Google Scholar 

  • Maruotti, A., & Punzo, A. (2021). Initialization of hidden Markov and semi-Markov models: a critical evaluation of several strategies. International Statistical Review, 89(3), 447–480.

    Article  MathSciNet  Google Scholar 

  • Maruotti, A., & Rocci, R. (2012). A mixed non-homogeneous hidden Markov model for categorical data, with application to alcohol consumption. Statistics in Medicine, 31(9), 871–886.

    Article  MathSciNet  Google Scholar 

  • Maruotti, A., Punzo, A., & Bagnato, L. (2019). Hidden Markov and semi-Markov models with multivariate leptokurtic-normal components for robust modeling of daily returns series. Journal of Financial Econometrics, 17(1), 91–117.

    Article  Google Scholar 

  • Meng, X. L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika, 80(2), 267–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Merlo, L., Maruotti, A., Petrella, L., et al. (2022). Quantile hidden semi-Markov models for multivariate time series. Statistics and Computing, 32(4), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Montanari, G. E., & Pandolfi, S. (2018). Evaluation of long-term health care services through a latent Markov model with covariates. Statistical Methods & Applications, 27, 151–173.

    Article  MathSciNet  MATH  Google Scholar 

  • Ozerkek, Y. (2013). Unemployment and labor force participation: a panel cointegration analysis for European countries. Applied Econometrics and International Development, 13(1), 67–76.

    Google Scholar 

  • Punzo, A. (2014). Flexible mixture modelling with the polynomial Gaussian cluster-weighted model. Statistical Modelling, 14(3), 257–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Punzo, A., & McNicholas, P. D. (2016). Parsimonious mixtures of multivariate contaminated normal distributions. Biometrical Journal, 58(6), 1506–1537.

    Article  MathSciNet  MATH  Google Scholar 

  • Punzo, A., & McNicholas, P. D. (2017). Robust clustering in regression analysis via the contaminated Gaussian cluster-weighted model. Journal of Classification, 34, 249–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Punzo, A., Ingrassia, S., & Maruotti, A. (2018). Multivariate generalized hidden Markov regression models with random covariates: physical exercise in an elderly population. Statistics in Medicine, 37(19), 2797–2808.

    Article  MathSciNet  Google Scholar 

  • Punzo, A., Ingrassia, S., & Maruotti, A. (2021). Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions. Statistical Papers, 62(3), 1519–1555.

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

  • Sarkar, S., Zhu, X., Melnykov, V., et al. (2020). On parsimonious models for modeling matrix data. Computational Statistics & Data Analysis, 142(106), 822.

    MathSciNet  MATH  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Scrucca L., Fop M., Murphy T.B., et al. (2016). mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289–317. https://doi.org/10.32614/RJ-2016-021

  • Tomarchio S. D. (2022). Matrix-variate normal mean-variance Birnbaum–Saunders distributions and related mixture models. Computational Statistics pp. 1–28

  • Tomarchio, S. D., McNicholas, P. D., & Punzo, A. (2021). Matrix normal cluster-weighted models. Journal of Classification, 38(3), 556–575.

    Article  MathSciNet  MATH  Google Scholar 

  • Tomarchio, S. D., Bagnato, L., & Punzo, A. (2022). Model-based clustering via new parsimonious mixtures of heavy-tailed distributions. AStA Advances in Statistical Analysis, 106(2), 315–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Tomarchio, S. D., Gallaugher, M. P., Punzo, A., et al. (2022). Mixtures of matrix-variate contaminated normal distributions. Journal of Computational and Graphical Statistics, 31(2), 413–421.

    Article  MathSciNet  MATH  Google Scholar 

  • Tomarchio, S. D., Punzo, A., & Maruotti, A. (2022). Parsimonious hidden Markov models for matrix-variate longitudinal data. Statistics and Computing, 32(3), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Viroli, C. (2012). On matrix-variate regression analysis. Journal of Multivariate Analysis, 111, 296–309.

    Article  MathSciNet  MATH  Google Scholar 

  • Visser, I., Raijmakers, M. E., & Molenaar, P. C. (2000). Confidence intervals for hidden Markov model parameters. British Journal of Mathematical and Statistical Psychology, 53(2), 317–327.

    Article  Google Scholar 

  • Visser, I., Raijmakers, M. E., & Molenaar, P. (2002). Fitting hidden Markov models to psychological data. Scientific Programming, 10(3), 185–199.

    Article  Google Scholar 

  • Welch, L. R. (2003). Hidden Markov models and the baum-welch algorithm. IEEE Information Theory Society Newsletter, 53(4), 10–13.

    Google Scholar 

  • Zucchini, W., MacDonald, I. L., & Langrock, R. (2017). Hidden Markov models for time series: an introduction using R. CRC Press.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research also contributes to the PNRR GRInS Project. This research has also been partially supported by MIUR via "The SMILE project: Statistical Modelling and Inference to Live the Environment".

Funding

The authors have no financial interests to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore D. Tomarchio.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to disclose.

Ethical Conduct

The authors have fulfilled ethical conduct.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Here, we report the parameters used to generate the simulated datasets of Section 4.1 for the MV-HMRMFCs. We used the following parameters for all three models: \(\pi _1=\pi _2=\pi _3=1/3,\)

$$\begin{aligned} \varvec{\Pi }=\left( \begin{array}{lll} 0.70 &{} 0.20 &{} 0.10 \\ 0.10 &{} 0.80 &{} 0.10 \\ 0.10 &{} 0.30 &{} 0.60 \end{array}\right) , \quad \textbf{B}_1=\left( \begin{array}{llll} 0.00 &{} 1.00 &{} \quad 1.00 &{} -1.00 \\ 1.00 &{} 1.00 &{} -1.00 &{} \quad 1.00 \\ 0.00 &{} 1.00 &{} \quad 1.00 &{} -1.00 \end{array}\right) . \end{aligned}$$

Additionally, for \(\textbf{B}_2\) and \(\textbf{B}_3\), we use the same regression coefficients of \(\textbf{B}_1\), with the exclusion of the first column containing the intercepts, which are replaced by the following vectors \(\varvec{\beta }_{2}=(-7,-8,-7)'\) and \(\varvec{\beta }_{3}=(7,8,7)'\), respectively. Then, for the VVV-VV MV-HMRMFC, we have

$$\begin{aligned} \varvec{\Sigma }_{\mathcal {Y}|1}=\left( \begin{array}{lll} 1.56 &{} \quad 0.22 &{} \quad 0.77 \\ 0.22 &{} \quad 0.41 &{} -0.07 \\ 0.77 &{} -0.07 &{} \quad 1.04 \end{array}\right) , \quad \varvec{\Sigma }_{\mathcal {Y}|2}=\left( \begin{array}{lll} 1.98 &{} \quad 0.39 &{} \quad 0.10 \\ 0.39 &{} \quad 2.07 &{} -0.09 \\ 0.10 &{} -0.09 &{} \quad 2.08 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Sigma }_{\mathcal {Y}|3}=\left( \begin{array}{lll} \quad 3.93 &{} -1.28 &{} 0.10 \\ -1.28 &{} \quad 6.21 &{} 1.29 \\ \quad 0.10 &{} \quad 1.29 &{} 3.09 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {Y}|1}=\left( \begin{array}{lll} \quad 0.78 &{} 0.05 &{} -0.20 \\ \quad 0.05 &{} 1.11 &{} \quad 0.56 \\ -0.20 &{} 0.56 &{} \quad 1.50 \end{array}\right) , \quad \varvec{\Psi }_{\mathcal {Y}|2}=\left( \begin{array}{lll} \quad 2.77 &{} -0.49 &{} \quad 0.10 \\ -0.49 &{} \quad 0.67 &{} -0.03 \\ \quad 0.10 &{} -0.03 &{} \quad 0.72 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {Y}|3}=\left( \begin{array}{lll} \quad 4.01 &{} -1.49 &{} \quad 0.10 \\ -1.49 &{} \quad 0.99 &{} -0.69 \\ \quad 0.10 &{} -0.69 &{} \quad 1.36 \end{array}\right) . \end{aligned}$$

For the VVI-VI MV-HMRMFC, we set \(\varvec{\Sigma }_{\mathcal {Y}|1}=\text {diag}(0.64,2.12,0.25)\), \(\varvec{\Sigma }_{\mathcal {Y}|2}=\text {diag}(1.50,\) 2.16, 2.47), \(\varvec{\Sigma }_{\mathcal {Y}|3}=\text {diag}(7.16,2.51,3.56)\), \(\varvec{\Psi }_{\mathcal {Y}|1}=\text {diag}(0.58,1.92,0.90)\), \(\varvec{\Psi }_{\mathcal {Y}|2}=\text {diag}(0.46,0.73,2.98)\) and \(\varvec{\Psi }_{\mathcal {Y}|3}=\text {diag}(0.49,0.37,5.50)\), where diag\((\cdot )\) identifies a diagonal matrix.

For the EVE-EE MV-HMRMFC, we use

$$\begin{aligned} \varvec{\Sigma }_{\mathcal {Y}|1}=\left( \begin{array}{lll} \quad 1.30 &{} -0.61 &{} -0.10 \\ -0.61 &{} \quad 2.83 &{} -2.24 \\ -0.10 &{} -2.24 &{} \quad 4.48 \end{array}\right) , \quad \varvec{\Sigma }_{\mathcal {Y}|2}=\left( \begin{array}{lll} 1.98 &{} \quad 0.39 &{} \quad 0.29 \\ 0.00 &{} \quad 2.07 &{} -0.09 \\ 0.29 &{} -0.09 &{} \quad 2.08 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Sigma }_{\mathcal {Y}|3}=\left( \begin{array}{lll} \quad 2.68 &{} -0.69 &{} -0.58 \\ -0.69 &{} \quad 2.15 &{} \quad 0.68 \\ -0.58 &{} \quad 0.68 &{} \quad 1.78 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {Y}|1}=\varvec{\Psi }_{\mathcal {Y}|2}=\varvec{\Psi }_{\mathcal {Y}|3}= \left( \begin{array}{lll} \quad 2.77 &{} -0.49 &{} -0.49 \\ -0.49 &{} \quad 0.67 &{} -0.03 \\ -0.49 &{} -0.03 &{} \quad 0.72 \end{array}\right) . \end{aligned}$$

Appendix B

Here, we report the parameters used to generate the simulated datasets of Section 4.1 for the MV-HMRMRCs. We used the following parameters for all three models: \(\pi _1=\pi _2=0.50,\)

$$\begin{aligned} \varvec{\Pi }=\left( \begin{array}{ll} 0.60 &{} 0.40 \\ 0.20 &{} 0.80 \end{array}\right) , \quad \textbf{B}_1=\left( \begin{array}{llll} 2.00 &{} 1.00 &{} \quad 1.00 &{} -1.00 \\ 3.00 &{} 1.00 &{} -1.00 &{} \quad 1.00 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \textbf{M}_1=\left( \begin{array}{lllll} -4 &{} -3 &{} -4 &{} -3 &{} -4 \\ -2 &{} -3 &{} -3 &{} -2 &{} -2 \\ -3 &{} -3 &{} -4 &{} -4 &{} -3 \end{array}\right) . \end{aligned}$$

Similarly to before, for \(\textbf{B}_2\) we use the same regression coefficients of \(\textbf{B}_1\), with the exclusion of the first column containing the intercepts, which is replaced by the following vector \(\varvec{\beta }_{2}=(-12,-13)'\). Additionally, \(\textbf{M}_2\) is obtained by adding a constant \(c=9\) to each element in \(\textbf{M}_1\).

Then, for the VVV-VV-VVV-VV MV-HMRMRC, we have

$$\begin{aligned} \varvec{\Sigma }_{\mathcal {Y}|1}=\left( \begin{array}{ll} 1.70 &{} 0.18 \\ 0.18 &{} 0.61 \end{array}\right) , \quad \varvec{\Sigma }_{\mathcal {Y}|2}=\left( \begin{array}{ll} \quad 8.78 &{} -2.69 \\ -2.69 &{} \quad 2.65 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {Y}|1}=\left( \begin{array}{lllll} \quad 1.08 &{}-0.09 &{}-0.01 &{}-0.08 &{} 0.03 \\ -0.09 &{} \quad 1.00 &{} \quad 0.08 &{}-0.03 &{} 0.20 \\ -0.01 &{} \quad 0.08 &{} \quad 0.82 &{} \quad 0.13 &{} 0.17 \\ -0.08 &{}-0.03 &{} \quad 0.13 &{} \quad 1.17 &{} 0.21 \\ \quad 0.03 &{} \quad 0.20 &{} \quad 0.17 &{} \quad 0.21 &{} 1.12 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {Y}|2}=\left( \begin{array}{lllll} \quad 0.84 &{} \quad 0.11 &{} -0.26 &{} \quad 0.00 &{} -0.44 \\ \quad 0.11 &{} \quad 0.96 &{} \quad 0.20 &{} -0.12 &{} -0.20 \\ -0.26 &{} \quad 0.20 &{} \quad 1.65 &{} -0.21 &{} \quad 0.77 \\ \quad 0.00 &{} -0.12 &{} -0.21 &{} \quad 0.73 &{} -0.05 \\ -0.44 &{} -0.20 &{} \quad 0.77 &{} -0.05 &{} \quad 1.77 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Sigma }_{\mathcal {X}|1}=\left( \begin{array}{lll} \quad 4.30 &{} \quad 0.26 &{} -0.33 \\ \quad 0.26 &{} \quad 4.24 &{} -1.31 \\ -0.33 &{} -1.31 &{} \quad 3.94 \end{array}\right) , \quad \varvec{\Sigma }_{\mathcal {X}|2}=\left( \begin{array}{lll} 1.04 &{} 0.52 &{} 0.18 \\ 0.52 &{} 1.16 &{} 0.52 \\ 0.18 &{} 0.52 &{} 1.31 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {X}|1}=\left( \begin{array}{lllll} \quad 0.76 &{} -0.10 &{} \quad 0.03 &{} \quad 0.02 &{} \quad 0.07 \\ -0.10 &{} \quad 1.16 &{} \quad 0.15 &{} -0.21 &{} \quad 0.15 \\ \quad 0.03 &{} \quad 0.15 &{} \quad 1.09 &{} -0.39 &{} \quad 0.22 \\ \quad 0.02 &{} -0.21 &{} -0.39 &{} \quad 1.19 &{} -0.09 \\ \quad 0.07 &{} \quad 0.15 &{} \quad 0.22 &{} -0.09 &{} \quad 1.10 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {X}|2}=\left( \begin{array}{lllll} \quad 1.59 &{} \quad 0.21 &{} \quad 0.77 &{} -0.25 &{} -0.14 \\ \quad 0.21 &{} \quad 0.65 &{} \quad 0.10 &{} -0.11 &{} -0.23 \\ \quad 0.77 &{} \quad 0.10 &{} \quad 1.30 &{} -0.05 &{} \quad 0.35 \\ -0.25 &{} -0.11 &{} -0.05 &{} \quad 0.77 &{} \quad 0.47 \\ -0.14 &{} -0.23 &{} \quad 0.35 &{} \quad 0.47 &{} \quad 2.01 \end{array}\right) . \end{aligned}$$

For the VVI-VI-VVI-VI MV-HMRMRC, we set \(\varvec{\Sigma }_{\mathcal {Y}|1}=\text {diag}(1.73,0.58)\), \(\varvec{\Sigma }_{\mathcal {Y}|2}=\text {diag}(1.63,9.80)\), \(\varvec{\Psi }_{\mathcal {Y}|1}=\text {diag}(0.74,1.48,0.74,1.11,1.11)\), \(\varvec{\Psi }_{\mathcal {Y}|2}=\text {diag}(2.64,1.32,0.66,\) 0.66, 0.66), \(\varvec{\Sigma }_{\mathcal {X}|1}=\text {diag}(5.55,2.77,4.16)\), \(\varvec{\Sigma }_{\mathcal {X}|2}=\text {diag}(1.00,2.00,0.50)\), \(\varvec{\Psi }_{\mathcal {X}|1}=\text {diag}(1.06,1.77,1.06,0.71,0.71)\) and \(\varvec{\Psi }_{\mathcal {X}|2}=\text {diag}(0.57,0.57,2.30,2.30,0.57)\).

For the EVE-EE-EEV-EV MV-HMRMRC, we use

$$\begin{aligned} \varvec{\Sigma }_{\mathcal {Y}|1}=\left( \begin{array}{ll} 1.70 &{} 0.18 \\ 0.18 &{} 0.61 \end{array}\right) , \quad \varvec{\Sigma }_{\mathcal {Y}|2}=\left( \begin{array}{ll} \quad 0.46 &{} -0.32 \\ -0.32 &{} \quad 2.40 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {Y}|1}=\varvec{\Psi }_{\mathcal {Y}|2}=\left( \begin{array}{lllll} \quad 1.08 &{} -0.09 &{} -0.01 &{} -0.08 &{} 0.03 \\ -0.09 &{} \quad 1.00 &{} \quad 0.08 &{} -0.03 &{} 0.20 \\ -0.01 &{} \quad 0.08 &{} \quad 0.82 &{} \quad 0.13 &{} 0.17 \\ -0.08 &{} -0.03 &{} \quad 0.13 &{} \quad 1.17 &{} 0.21 \\ \quad 0.03 &{} \quad 0.20 &{} \quad 0.17 &{} \quad 0.21 &{} 1.12 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Sigma }_{\mathcal {X}|1}=\left( \begin{array}{lll} \quad 2.21 &{} 0.64 &{} -0.18 \\ \quad 0.64 &{} 5.59 &{} \quad 2.07 \\ -0.18 &{} 2.07 &{} \quad 6.20 \end{array}\right) , \quad \varvec{\Sigma }_{\mathcal {X}|2}=\left( \begin{array}{lll} 4.14 &{} 2.06 &{} 0.71 \\ 2.06 &{} 4.62 &{} 2.07 \\ 0.71 &{} 2.07 &{} 5.24 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {X}|1}=\left( \begin{array}{lllll} \quad 0.76 &{} -0.10 &{} \quad 0.03 &{} \quad 0.02 &{} \quad 0.07 \\ -0.10 &{} \quad 1.16 &{} \quad 0.15 &{} -0.21 &{} \quad 0.15 \\ \quad 0.03 &{} \quad 0.15 &{} \quad 1.09 &{} -0.39 &{} \quad 0.22 \\ \quad 0.02 &{} -0.21 &{} -0.39 &{} \quad 1.19 &{} -0.09 \\ \quad 0.07 &{} \quad 0.15 &{} \quad 0.22 &{} -0.09 &{} \quad 1.10\end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {X}|2}=\left( \begin{array}{lllll} \quad 1.11 &{} \quad 0.21 &{} -0.25 &{} -0.10 &{} \quad 0.02 \\ \quad 0.21 &{} \quad 0.84 &{} -0.22 &{} -0.10 &{} \quad 0.08 \\ -0.25 &{} -0.22 &{} \quad 1.29 &{} \quad 0.12 &{} -0.32 \\ -0.10 &{} -0.10 &{} \quad 0.12 &{} \quad 1.12 &{} -0.13 \\ \quad 0.02 &{} \quad 0.08 &{} -0.32 &{} -0.13 &{} \quad 0.95 \end{array}\right) . \end{aligned}$$

Appendix C

Here, we report the remaining parameters used to generate the simulated datasets of Section 4.3. In particular, we have \(\textbf{M}_2=\textbf{M}_1\) in Scenario A and the following parameters in common between the two scenarios

$$\begin{aligned} \varvec{\Sigma }_{\mathcal {Y}|1}=\varvec{\Sigma }_{\mathcal {Y}|2}=\left( \begin{array}{ll} 2.56 &{} 0.56 \\ 0.56 &{} 1.69 \end{array}\right) , \quad \varvec{\Sigma }_{\mathcal {X}|1}=\varvec{\Sigma }_{\mathcal {X}|2}=\left( \begin{array}{lll} \quad 1.47 &{} -0.30 &{} -0.50 \\ -0.30 &{} \quad 2.23 &{} -0.60 \\ -0.50 &{} -0.60 &{} \quad 2.90 \end{array}\right) , \end{aligned}$$
$$\begin{aligned} \varvec{\Psi }_{\mathcal {Y}|1}=\varvec{\Psi }_{\mathcal {Y}|2}=\varvec{\Psi }_{\mathcal {X}|1}=\varvec{\Psi }_{\mathcal {X}|2}\left( \begin{array}{lllll} \quad 0.75 &{} -0.53 &{} -0.52 &{} 0.03 &{} -0.22 \\ -0.53 &{} \quad 2.90 &{} -0.93 &{} 0.76 &{} \quad 0.39 \\ -0.52 &{} -0.93 &{} \quad 5.06 &{} 0.22 &{} \quad 0.26 \\ \quad 0.03 &{} \quad 0.76 &{} \quad 0.22 &{} 4.72 &{} \quad 1.49 \\ -0.22 &{} \quad 0.39 &{} \quad 0.26 &{} 1.49 &{} \quad 4.17 \end{array}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomarchio, S.D., Punzo, A. & Maruotti, A. Matrix-Variate Hidden Markov Regression Models: Fixed and Random Covariates. J Classif (2023). https://doi.org/10.1007/s00357-023-09438-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00357-023-09438-y

Keywords

Navigation