Log in

Main results of the third international PIV Challenge

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper presents the main results of the third international PIV Challenge which took place in Pasadena (USA) on the 19th and 20th of September 2005. This workshop was linked to the PIV05 International Symposium held at the same place the same week. The present contribution states the objectives of the challenge, describes the test cases and the algorithms used by the participants, and presents the main results together with some discussion and conclusions on the accuracy and robustness of various PIV and PTV algorithms. As the entire amount of results obtained cannot be detailed, this contribution is written as a guide for the use of the full database of images and results which is available at http://www.pivChallenge.org.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

References

  • Astarita T (2006) Analysis of interpolation schemes for image deformation methods in PIV: effect of noise on the accuracy and spatial resolution. Exp Fluids 40:977–987

    Article  Google Scholar 

  • Astarita T, Cardone G (2005) Analysis of interpolation schemes for image deformation methods in PIV. Exp Fluids 38:233–243

    Article  Google Scholar 

  • Corpetti T, Ménin E, Pérez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intel24(3):365–380

    Article  Google Scholar 

  • Corpetti T, Heitz D, Arroyo G, Ménin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical flow scheme. Exp Fluids 40:80–97

    Article  Google Scholar 

  • David L, Dupré JC, Valle V, Robin E, Koudeir M, Brochard J, Jarny S, Calluaud D (2005) Comparison of three techniques to localize and to measure 3D surfaces. In: 6th International symposium on particle image velocimetry, Pasadena (USA)

  • Di Florio D, Di Felice F, Romano (2002) G. P. Windowing, re-sha** and re-orientation interrogation windows in particle image velocimetry for the investigation of shear flows. Meas Sci Technol 13:953–962

    Article  Google Scholar 

  • Doh DH, Kim DH, Cho KR, Cho YB, Saga T, Kobayashi SK (2002) Development of genetic algorithm based 3D-PTV technique. J Vis 5(3):243–254

    Article  Google Scholar 

  • van Doorne CWH, Westerweel J (2007) Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-PIV. Exp Fluids 42:259–279

    Article  Google Scholar 

  • Draad AA, Nieuwstadt FTM (1998) The Earth’s rotation and laminar pipe flow. J Fluid Mech 361:297–308

    Article  MathSciNet  MATH  Google Scholar 

  • Hain R, Kähler CJ (2007) Fundamentals of multiframe particle image velocimetry (PIV). Exp Fluids 42:575–587

    Article  Google Scholar 

  • Hain R, Kähler CJ, Tropea C (2007) Comparison of CCD, CMOS and intensified cameras. Exp Fluids 42:403–411

    Article  Google Scholar 

  • Horn B, Schunck B (1981) Determining optical flow. Artif Intel 17:185–203

    Article  Google Scholar 

  • Kähler CJ, Kompenhans J (2000) Fundamentals of multiple plane stereo particle image velocimetry. Exp Fluids 29:S70–S77

    Article  Google Scholar 

  • Kähler CJ, Sammler B, Kompenhans J (2002) Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics. Exp Fluids 33:736–742

    Google Scholar 

  • Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215

    Article  Google Scholar 

  • Laval J-P, McWilliams J-C, Dubrulle B (2003) Forced stratified turbulence: successive transitions with Reynolds number. Phys Rev E 68:036308

    Article  Google Scholar 

  • Lecordier B, Trinité M (2004) Advanced PIV algorithms with image distortion for velocity measurements in turbulent flows. In: Stanislas M, Westerweel J, Kompenhans J (eds) Proceedings of the EUROPIV 2 workshop held in Zaragoza, Spain, March 31–April 1, 2003. Springer, Heidelberg, ISBN 3-540-21423-2

  • Lecordier B, Westerweel J (2004) The EUROPIV synthetic image generator. In: Stanislas M, Westerweel J, Kompenhans J (eds) Particle image velocimetry: recent improvements. Springer, Heidelberg

  • Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. From Proceedings of imaging understanding workshop, pp 121–130

  • Lugni C, Brocchini M, Faltinsen OM (2006) Wave impact loads: the role of flip-through. Phys Fluids 18(1) (in press)

  • Marrazzo M, De Gregorio F, Romano GP (2004) The use of a deformable weight function and of advanced validation procedures in PIV. In: 12th International symposium on applications of laser techniques to fluid mechanics, Lisbon

  • Marxen O, Rist U, Wagner S (2004) The effect of spanwise-modulated disturbances on transition in a 2-D separated boundary layer. AIAA J 42:937–944

    Article  Google Scholar 

  • Miozzi M (2004) Particle Image Velocimetry using feature tracking and Delaunay tessellation. In: Proceedings of the 12th int. symp. on appl. laser tech. to fluid mech., Lisbon

  • Miozzi M (2005) Direct measurement of velocity gradients in digital images and vorticity evaluation. In: 6th International symposium on particle image velocimetry, Pasadena, September 21–23

  • Nogueira J, Lecuona A, Rodriguez PA (1997) Data validation, false vectors correction and derived magnitudes calculation on PIV data. Meas Sci Technol 8:1493–1501

    Article  Google Scholar 

  • Ohmi K, Hang Yu L (2000) Particle tracking velocity with new algorithms. Meas Sci Technol 11:603–616

    Article  Google Scholar 

  • Okamoto K, Nishio S, Kobayashi T, Saga T, Takehara K (2000a) Evaluation of the 3D-PIV standard images (PIV-STD Project). J Vis 3–2:115–124

    Google Scholar 

  • Okamoto K, Nishio S, Saga T, Kobayashi T (2000b) Standard images for particle-image velocimetry. Meas Sci Technol 11:685–691

    Article  Google Scholar 

  • Quénot GM, Pakleza J, Kowalewski TA (1998) Particle image velocimetry with optical flow. Exp Fluids 25–3:177–189

    Google Scholar 

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry—a practical guide, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13:R1–R19

    Article  Google Scholar 

  • Scarano F, Riethmuller M (2000) Advances in Iterative multigrid PIV image processing. Exp Fluids Suppl 29:S51–S60

    Article  Google Scholar 

  • Scarano F, David L, Bsibsi M, Calluaud D (2005) S-PIV comparative assessment: image dewar**+misalignment correction and pinhole+geometric back projection. Exp Fluids 39:257–266

    Article  Google Scholar 

  • Schrijer FFJ, Scarano F (2006) On the stabilization and spatial resolution of iterative PIV interrogation. 13th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 26–29 June, 2006

  • Soloff SM, Adrian RJ, Liu Z-C (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1454

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kaehler C (2003) Main results of the first international PIV Challenge. Meas Sci Technol 14:R63–R89

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kaehler CJ, Westerweel J (2005) Main results of the second international PIV Challenge. Exp Fluids 39:170–191

    Article  Google Scholar 

  • Stitou A, Riethmuller ML (2001) Extension of PIV to Super Resolution using PTV. Meas Sci Technol 12(9):1398–1403

    Article  Google Scholar 

  • Wereley ST, Gui LC (2002) Advanced algorithms for microscale Particle Image Velocimetry. AIAA J 40(6):1047–1055

    Article  Google Scholar 

  • Wernet M (2005) Symmetric phase only filtering: a new paradigm for DPIV data processing. Meas Sci Technol 16:601–618

    Article  Google Scholar 

  • Westerweel J, Scarano F (2005) A universal detection criterion for the median test. Exp Fluids 39:1096–1100

    Article  Google Scholar 

  • Willert C (2004) Application potential of advanced PIV algorithms for industrial applications. Pivnet/ERCOFTAC workshop on Particle Image Velocimetry, Lisbon, July 9–10

  • Willert C (2006) Assessment of camera models for use in planar velocimetry calibration. Exp Fluids 41:135–143

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to S. Coudert, J. M. Foucaut and R. Hain for their help in preparing and processing the data and organising the Challenge. They are also thankful to prof. H. Naghib and his team for the friendly and efficient organisation of the workshop in Pasadena, USA. They are finally thankful to the Visualisation Society of Japan and the European Commission (through the PIVNET 2 European thematic network) for supporting this Challenge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stanislas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanislas, M., Okamoto, K., Kähler, C.J. et al. Main results of the third international PIV Challenge. Exp Fluids 45, 27–71 (2008). https://doi.org/10.1007/s00348-008-0462-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0462-z

Keywords

Navigation