FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13485))

Included in the following conference series:

  • 1887 Accesses

Abstract

Self-supervised pretraining has shown impressive performance in recent years, matching or even outperforming ImageNet weights on a broad range of downstream tasks. Unfortunately, existing methods require massive amounts of computing power with large batch sizes and batch norm statistics synchronized across multiple GPUs. This effectively excludes substantial parts of the computer vision community from the benefits of self-supervised learning who do not have access to extensive computing resources.

To address that, we develop FastSiam with the aim of matching ImageNet weights given as little computing power as possible. We find that a core weakness of previous methods like SimSiam is that they compute the training target based on a single augmented crop (or “view”), leading to target instability. We show that by using multiple views per image instead of one, the training target can be stabilized, allowing for faster convergence and substantially reduced runtime. We evaluate FastSiam on multiple challenging downstream tasks including object detection, instance segmentation and keypoint detection and find that it matches ImageNet weights after 25 epochs of pretraining on a single GPU with a batch size of only 32.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bar, A., et al.: Detreg: unsupervised pretraining with region priors for object detection (2021). ar**v:2106.04550

  2. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  3. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9912–9924 (2020)

    Google Scholar 

  4. Caron, M., et al.: Emerging properties in self-supervised vision transformers (2021). ar**v:2104.14294

  5. Chen, K., Hong, L., Xu, H., Li, Z., Yeung, D.Y.: Multisiam: self-supervised multi-instance siamese representation learning for autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7546–7554 (2021)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 1597–1607 (2020)

    Google Scholar 

  7. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning (2020). ar**v:2003.04297

  8. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15750–15758 (2021)

    Google Scholar 

  9. Chen, X., He, K.: Simsiam: exploring simple siamese representation learning (2021). https://github.com/facebookresearch/simsiam

  10. Chen, X., **e, S., He, K.: An empirical study of training self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9640–9649 (2021)

    Google Scholar 

  11. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding (2016). ar**v:1604.01685

  12. Dai, Z., Cai, B., Lin, Y., Chen, J.: UP-DETR: unsupervised pre-training for object detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1601–1610 (2021)

    Google Scholar 

  13. Ding, J., et al.: Unsupervised pretraining for object detection by patch reidentification (2021). ar**v:2103.04814

  14. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  15. Gidaris, S., Bursuc, A., Puy, G., Komodakis, N., Cord, M., Perez, P.: Obow: online bag-of-visual-words generation for self-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6830–6840 (2021)

    Google Scholar 

  16. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: International Conference on Learning Representations ICLR (2018)

    Google Scholar 

  17. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning (2020). ar**v:2006.07733

  18. He, K., Fan, H., Wu, Y., **e, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  19. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  20. Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  21. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection (2017). ar**v:1612.03144

  22. Lin, T.Y., et al.: Microsoft coco: common objects in context (2015). ar**v:1405.0312

  23. Liu, S., Li, Z., Sun, J.: Self-EMD: self-supervised object detection without imagenet. CoRR (2020). ar**v:2011.13677

  24. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  25. Pinheiro, P., Almahairi, A., Benmalek, R., Golemo, F., Courville, A.: Unsupervised learning of dense visual representations. In: Advances in Neural Information Processing Systems, vol. 33, pp. 4489–4500 (2020)

    Google Scholar 

  26. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge (2015). ar**v:1409.0575

  27. Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6827–6839. Curran Associates, Inc. (2020)

    Google Scholar 

  28. Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Dense contrastive learning for self-supervised visual pre-training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3024–3033 (2021)

    Google Scholar 

  29. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  30. Wu, Z., **ong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  31. **e, E., et al.: DetCo: unsupervised contrastive learning for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8392–8401 (2021)

    Google Scholar 

  32. **e, Z., et al.: Self-supervised learning with swin transformers (2021). ar**v:2105.04553

  33. Zbontar, J., **g, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning (ICML) (2021)

    Google Scholar 

  34. Zhou, J., et al.: iBOT: image BERT pre-training with online tokenizer (2021). ar**v:2111.07832

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pototzky .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 699 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pototzky, D., Sultan, A., Schmidt-Thieme, L. (2022). FastSiam: Resource-Efficient Self-supervised Learning on a Single GPU. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation