Log in

Deciphering the Role of Phytohormones and Osmolytes in Plant Tolerance Against Salt Stress: Implications, Possible Cross-Talk, and Prospects

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salinity is one of the main abiotic stresses, which adversely affects the growth, and development and ultimately yield of crop plants. In recent years, phytohormones have been involved in reducing the adverse effects of salt stress. For instance, phytohormone auxin is important for stabilizing the cellular pH environment and activating Na+/H+ antiporters under salt stress. The application of gibberellins helps increase the seedlings’ water status and maintain RNA and protein levels to maintain growth under salinity stress. Some other types of phytohormones and osmolytes such as abscisic acid, salicylic acid, and ethylene have also been reported to reduce the Na+/K+ ratio and Na+ and Cl content, improve the antioxidant enzymes activities and regulate the expression of various genes, including NTHK1, AtMEKK1, AtRSH3, Cat1, thereby enhancing the plant resistance to salt stress. The individual effects of phytohormones have been discussed in various studies, but comprehensive studies on the application of various phytohormones under salinity stress are lacking. Hence the emphasis of this review is on current and former studies that identify the molecular mechanisms by which phytohormones/osmolytes regulate plant tolerance to salinity stress in promoting growth and development. In this review, we summarized the role of various phytohormones, i.e., cytokinin, abscisic acid, gibberellins, jasmonic acid, auxins, brassinosteroids, and ethylene which directly or indirectly play a vital role in modulating the response of the crop to salinity stress. Furthermore, the role of various osmolytes, i.e., proline and glycine betaine, to enhance salinity tolerance was also highlighted. In addition, the interaction and crosstalk between phytohormones and osmolytes under salinity stress in the plant was adequately elaborated. In the end, future research needs about the application of phytohormones and osmolytes have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd-Allah EF, Alqarawi A, Hashem A, Wirth S, Egamberdieva D (2018) Regulatory roles of 24-epibrassinolide in tolerance of Acacia gerrardii Benth to salt stress. Bioengineered 9:61–71

    CAS  PubMed  Google Scholar 

  • Abdel Latef AA, Tran LSP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243

    PubMed  PubMed Central  Google Scholar 

  • Abdel Latef AAH, Akter A, Tahjib-Ul-Arif M (2021) Foliar application of auxin or cytokinin can confer salinity stress tolerance in Vicia faba L. Agronomy 11(4):790

    CAS  Google Scholar 

  • Abdelaal KA, El-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, El-Esawi M, Elkelish A (2020) Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy 10(1):26

    CAS  Google Scholar 

  • Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S (2020) Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ Sci Pollut Res 27(29):36939–36953

    CAS  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–94

    CAS  PubMed  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Google Scholar 

  • Adamu TA, Mun BG, Lee SU, Hussain A, Yun BW (2018) Exogenously applied nitric oxide enhances salt tolerance in rice (Oryza sativa L.) at seedling stage. Agronomy 8(12):276

    CAS  Google Scholar 

  • Afzal I, Basra SM, Farooq M, Nawaz A (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agric Biol 8(1):23–28

    CAS  Google Scholar 

  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P (2020) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10(1):42

    CAS  Google Scholar 

  • Ahmad A, Aslam Z, Naz M, Hussain S, Javed T, Aslam S, Raza A, Ali HM, Siddiqui MH, Salem MZ, Hano C (2021) Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. PloS one 16(12):e0260556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Baek KH (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci 21(2):621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Moon YS, Hamayun M, Khan MA, Lee BK, IJ, (2022) Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. J Plant Interact 17(1):705–718

    CAS  Google Scholar 

  • Ali AYA, Ibrahim MEH, Zhou G, Nimir NEA, Jiao X, Zhu G, Elsiddig AMI, Zhi W, Chen X, Lu H (2019) Ameliorative effects of jasmonic acid and humic acid on antioxidant enzymes and salt tolerance of forage sorghum under salinity conditions. Agron J 111(6):3099–3108

    Google Scholar 

  • Alisofi S, Einali A, Sangtarash MH (2020) Jasmonic acid-induced metabolic responses in bitter melon (Momordica charantia) seedlings under salt stress. J Hortic Sci Biotechnol 95(2):247–259

    CAS  Google Scholar 

  • Amini F, Ehsanpour AA (2005) Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Am J Biochem Biotechnol 1(4):212–216

    CAS  Google Scholar 

  • Amjad M, Akhtar J, Anwar-ul-Haq M, Yang A, Akhtar SS, Jacobsen SE (2014) Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hortic 172:109–116

    CAS  Google Scholar 

  • Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32(9):1147–1160

    CAS  PubMed  Google Scholar 

  • Ashfaque F, Khan MIR, Khan NA (2014) Exogenously applied H2O2 promotes proline accumulation, water relations, photosynthetic efficiency and growth of wheat (Triticum aestivum L.) under salt stress. Annu Res Rev Biol 4:105–120

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    CAS  Google Scholar 

  • Assaha DV, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    PubMed  PubMed Central  Google Scholar 

  • Avalbaev A, Allagulova C, Maslennikova D, Fedorova K, Shakirova F (2021) Methyl jasmonate and cytokinin mitigate the salinity-induced oxidative injury in wheat seedlings. J Plant Growth Regul 40(4):1741–1752

    CAS  Google Scholar 

  • Bajwa AA, Farooq M, Nawaz A (2018) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24(2):239–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y (2009) Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol 166(2):146–156

    CAS  PubMed  Google Scholar 

  • Banyal S, Rai VK (1983) Reversal of osmotic stress effects by gibberellic acid in Brassica campestris. Recovery of hypocotyl growth, protein and RNA levels in the presence of GA. Physiol Plant 59(1):111–114

    CAS  Google Scholar 

  • Behl R, Dieter Jeschke W (1981) Influence of abscisic acid on unidirectional fluxes and intracellular compartmentation of K+ and Na+ in excised barley root segments. Physiol Plant 53(2):95–100

    CAS  Google Scholar 

  • Bin-Jumah M, Abdel-Fattah AFM, Saied EM, El-Seedi HR, Abdel-Daim MM (2021) Acrylamide-Induced Peripheral Neuropathy: Manifestations, Mechanisms, and Potential Treatment Modalities. Environ Sci Pollut Res 28:13031–13046

    CAS  Google Scholar 

  • Bueno M, Cordovilla MDP (2021) Plant growth regulators application enhance tolerance to salinity and benefit the halophyte plantago coronopus in saline agriculture. Plants 10(9):1872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28(2):187–192

    CAS  Google Scholar 

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2014) Lessons from crop plants struggling with salinity. Plant Sci 226:2–13

    CAS  PubMed  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143(2):707–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Zhang ZW, Xue LW, Du JB, Shang J, Xu F, Yuan S, Lin HH (2009) Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress. Z Naturforsch C 64:231–238

    CAS  PubMed  Google Scholar 

  • Cao YR, Chen SY, Zhang JS (2008) Ethylene signaling regulates salt stress response: an overview. Plant Signal Behav 3(10):761–763

    PubMed  PubMed Central  Google Scholar 

  • Carpena RO, Vázquez S, Esteban E, Fernández-Pascual M, de Felipe MR, Zornoza P (2003) Cadmium-stress in white lupin: effects on nodule structure and functioning. Plant Physiol Biochem 41(10):911–919

    CAS  Google Scholar 

  • Černý M, Kuklová A, Hoehenwarter W, Fragner L, Novák O, Rotková G, Jedelský PL, Žáková K, Šmehilová M, Strnad M (2013) Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down-and up-regulation. J Exp Bot 64(14):4193–4206

    PubMed  PubMed Central  Google Scholar 

  • Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Bot 60(7):2005–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trend Plant Sci 13(9):499–505

    CAS  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34(1):1–20

    PubMed  Google Scholar 

  • Chen TW, Gomez Pineda IM, Brand AM, Stützel H (2020) Determining ion toxicity in cucumber under salinity stress. Agronomy 10(5):677

    CAS  Google Scholar 

  • Chen C, Letnik I, Hacham Y et al (2014) ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166:370–383

    PubMed  PubMed Central  Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23(4):1219–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira FDB, de Souza MR, dos Santos AG, Coelho DG, Lobo MDP, de Oliveira P-M, de Sousa LL, Monteiro-Moreira ACO, de Carvalho HH, Gomes-Filho E (2020) New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition. Plant Physiol Biochem 154:723–734

    CAS  PubMed  Google Scholar 

  • de Oliveira VP, Lima MDR, da Silva BRS, Batista BL, da Silva Lobato AK (2019) Brassinosteroids confer tolerance to salt stress in Eucalyptus urophylla plants enhancing homeostasis, antioxidant metabolism and leaf anatomy. J Plant Growth Regul 38(2):557–573

    Google Scholar 

  • Del Pozo JC, Lopez-Matas MA, Ramirez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiol Plant 123(2):173–183

    Google Scholar 

  • Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175(3):387–404

    CAS  PubMed  Google Scholar 

  • Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I (2018) Calcium transport across plant membranes: mechanisms and functions. New Phytol 220(1):49–69

    CAS  PubMed  Google Scholar 

  • Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65(5):1259–1270

    CAS  PubMed  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128(2):379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ (2015) Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. Plant J 84(1):56–69

    CAS  PubMed  Google Scholar 

  • Dolferus R (2014) To grow or not to grow: a stressful decision for plants. Plant Sci 229:247–261

    CAS  PubMed  Google Scholar 

  • Dong Y, Wang W, Hu G, Chen W, Zhuge Y, Wang Z, He MR (2017) Role of exogenous 24-epibrassinolide in enhancing the salt tolerance of wheat seedlings. J Soil Sci Plant Nutr 17(3):554–569

    CAS  Google Scholar 

  • Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25(1):324–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Song Y, Yang A, Zhang J (2009) The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1. Physiol Plant 135(3):281–295

    CAS  PubMed  Google Scholar 

  • El-Katony TM, El-Bastawisy ZM, El-Ghareeb SS (2019) Timing of salicylic acid application affects the response of maize (Zea mays L.) hybrids to salinity stress. Heliyon 5(4):e01547

    CAS  PubMed  PubMed Central  Google Scholar 

  • El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127

    PubMed  PubMed Central  Google Scholar 

  • Elhakem A (2020) Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytes. Plant Soil Environ 66(10):533–541

    CAS  Google Scholar 

  • El-Iklil Y, Karrou M, Benichou M (2000) Salt stress effect on epinasty in relation to ethylene production and water relations in tomato. Agronomie 20(4):399–406

    Google Scholar 

  • Faghih S, Zarei A, Ghobadi C (2019) Positive effects of plant growth regulators on physiology responses of Fragaria× ananassa cv. ‘Camarosa’ under salt stress. Int J Fruit Sci 19(1):104–114

    Google Scholar 

  • Fahad S, Hussain S, Matloob A et al (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    CAS  Google Scholar 

  • Fang B, Yang LJ (2002) Evidence that the auxin signaling pathway interacts with plant stress response. J Integr Plant Biol 44(5):532

    Google Scholar 

  • Farhangi-Abriz S, Alaee T, Tavasolee A (2019) Salicylic acid but not jasmonic acid improved canola root response to salinity stress. Rhizosphere 9:69–71

    Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol Environ Saf 147:1010–1016

    CAS  PubMed  Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2016) Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. J Appl Bot Food Qual 89:243–248

    CAS  Google Scholar 

  • Fatima A, Hussain S, Hussain S, Ali B, Ashraf U, Zulfiqar U, Aslam Z, Al-Robai SA, Alzahrani FO, Hano C, El-Esawi MA (2021) Differential morphophysiological, biochemical, and molecular responses of maize hybrids to salinity and alkalinity stresses. Agronomy 11(6):1150

    CAS  Google Scholar 

  • Franco-Navarro JD, Brumós J, Rosales MA, Cubero-Font P, Talón M, Colmenero-Flores JM (2016) Chloride regulates leaf cell size and water relations in tobacco plants. J Exp Bot 67(3):873–891

    CAS  PubMed  Google Scholar 

  • Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D (2006) The short-term growth response to salt of the develo** barley leaf. J Exp Bot 57(5):1079–1095

    CAS  PubMed  Google Scholar 

  • Gaber A, Alsanie WF, Kumar DN, Refat MS, Saied EM (2020) Novel papaverine metal complexes with potential anticancer activities. Molecules 25:5447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gadelha CG, de Souza MR, Alencar NLM, Costa JH, Prisco JT, Gomes-Filho E (2017) Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol 212:69–79

    CAS  PubMed  Google Scholar 

  • Geng Y, Wu R, Wee CW, **e F, Wei X, Chan PMY, Tham C, Duan L, Dinneny JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25(6):2132–2154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospíšilová H, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Lutts S, Dodd IC (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L) plants. J Exp Bot 62(1):125–140

    CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Nikpour-Rashidabad N (2017) Seed pretreatment and salt tolerance of dill: osmolyte accumulation, antioxidant enzymes activities and essence production. Biocatal Agric Biotechnol 12:30–35

    Google Scholar 

  • Golan Y, Shirron N, Avni A, Shmoish M, Gepstein S (2016) Cytokinins induce transcriptional reprograming and improve Arabidopsis plant performance under drought and salt stress conditions. Front Environ Sci 4:63

    Google Scholar 

  • Guan C, Wang X, Feng J, Hong S, Liang Y, Ren B, Zuo J (2014) Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive5 protein in Arabidopsis. Plant Physiol 164(3):1515–1526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gudkov SV, Grinberg MA, Sukhov V, Vodeneev V (2019) Effect of ionizing radiation on physiological and molecular processes in plants. J Environ Radioact 202:8–24

    CAS  PubMed  Google Scholar 

  • Guo H, Huang Z, Li M, Hou Z (2020) Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci Rep 10(1):1–20

    Google Scholar 

  • Gupta P, Srivastava S, Seth CS (2017) 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant Soil 411(1–2):483–498

    CAS  Google Scholar 

  • Gurmani AR, Bano A, Ullah N, Khan H, Jahangir M, Flowers TJ (2013) Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (‘Oryza sativa’ indica). Aust J Crop Sci 7(9):1219–1226

    Google Scholar 

  • Hafeez MB, Zahra N, Zahra K, Raza A, Khan A, Shaukat K, Khan S (2021) Brassinosteroids: Molecular and physiological responses in plant growth and abiotic stresses. Plant Stress 2:100029

    CAS  Google Scholar 

  • Hai NN, Chuong NN, Tu NHC, Kisiala A, Hoang XLT, Thao NP (2020) Role and regulation of cytokinins in plant response to drought stress. Plants 9(4):422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58(12):7226–7232

    CAS  PubMed  Google Scholar 

  • Hara M (2010) The multifunctionality of dehydrins: an overview. Plant Signal Behav 5(5):503–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Alam M, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Res Int. https://doi.org/10.1155/2014/757219

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassine AB, Ghanem ME, Bouzid S, Lutts S (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J Exp Bot 59(6):1315–1326

    PubMed  Google Scholar 

  • He C, Yang A, Zhang W, Gao Q, Zhang J (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell Tissue Organ Cult 101(1):65–78

    CAS  Google Scholar 

  • Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63

    CAS  Google Scholar 

  • Hmida-Sayari A, Costa A, Leone A, Jaoua S, Gargouri-Bouzid R (2005) Identification of salt stress-induced transcripts in potato leaves by cDNA-AFLP. Mol Biotechnol 30(1):31–39

    CAS  PubMed  Google Scholar 

  • Hoque M, Haque S (2002) Effects of GA3 and its mode of application on morphology and yield parameters of mungbean (Vigna radiate L.). Pak J Biol Sci 5(3):281–283

    Google Scholar 

  • Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164(5):553–561

    CAS  PubMed  Google Scholar 

  • Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y (2018) The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol Plant 11(7):970–982

    CAS  PubMed  Google Scholar 

  • Huang Y, Sun MM, Ye Q, Wu XQ, Wu WH, Chen YF (2017) Abscisic acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. Plant Physiol 175(4):1661–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37(3):421

    CAS  Google Scholar 

  • Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N (2021) Recent progress in understanding salinity tolerance in plants: Story of Na+/K+ balance and beyond. Plant Physiol Biochem 160:239–256

    CAS  PubMed  Google Scholar 

  • Hussain S, Mehmood U, Ashraf U, Naseer MA (2022) Combined salinity and waterlogging stress in plants: limitations and tolerance mechanisms. Climate Change and Crop Stress. Academic Press, Cambridge, pp 95–112

    Google Scholar 

  • Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongué CA (2014) MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS One 9(9):e107678

    PubMed  PubMed Central  Google Scholar 

  • Iqbal M, Ashraf M (2013a) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    CAS  Google Scholar 

  • Iqbal M, Ashraf M (2013b) Salt tolerance and regulation of gas exchange and hormonal homeostasis by auxin-priming in wheat. Pesqui Agropecu Bras 48:1210–1219

    Google Scholar 

  • Iqbal N, Masood A, Khan NA (2012) Phytohormones in salinity tolerance: ethylene and gibberellins cross talk. Phytohormones and Abiotic Stress Tolerance in Plants. Springer, Berlin, pp 77–98

    Google Scholar 

  • Iqbal N, Nazar R, Khan MIR, Masood A, Khan NA (2011) Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions. Curr Sci 10:998–1007

    Google Scholar 

  • Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA (2013) Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol Biochem 73:128–138

    CAS  PubMed  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    PubMed  PubMed Central  Google Scholar 

  • Islam F, Farooq MA, Gill RA, Wang J, Yang C, Ali B, Wang G-X, Zhou W (2017) 2, 4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci Rep 7(1):1–23

    Google Scholar 

  • Islam F, **e Y, Farooq MA, Wang J, Yang C, Gill RA, Zhu J, Zhou W (2018) Salinity reduces 2, 4-D efficacy in Echinochloa crusgalli by affecting redox balance, nutrient acquisition, and hormonal regulation. Protoplasma 255(3):785–802

    CAS  PubMed  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad M (2011) Gene expression profiling of plants under salt stress. Cri Rev Plant Sci 30(5):435–458

    Google Scholar 

  • Jang SW, Hamayun M, Sohn EY, Shin DH, Kim KU, Lee BH, Lee IJ (2008) Effect of elevated nitrogen levels on endogenous gibberellin and jasmonic acid contents of three rice (Oryza sativa L.) cultivars. J Plant Nutr Soil Sci 171(2):181–186

    CAS  Google Scholar 

  • **i D, Joseph B (2017) Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci 24:97–108

    Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64(8):2255–2268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Fu X (2007) GA action: turning on de-DELLA repressing signaling. Curr Opin Plant Biol 10(5):461–465

    CAS  PubMed  Google Scholar 

  • Jodder J (2020) miRNA-mediated regulation of auxin signaling pathway during plant development and stress responses. J Biosci 45(1):1–10

    Google Scholar 

  • Jogawat A (2019) Crosstalk among phytohormone signaling pathways during abiotic stress. Molecular plant abiotic stress: biology and biotechnology. Wiley, Hoboken, pp 209–220

    Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    CAS  PubMed  Google Scholar 

  • Jung JH, Park CM (2011) Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal Behav 6(8):1198–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karami Chame S, Khalil-Tahmasbi B, ShahMahmoodi P, Abdollahi A, Fathi A, Seyed Mousavi SJ, Hossein Abadi M, Ghoreishi S, Bahamin S (2016) Effects of salinity stress, salicylic acid and Pseudomonas on the physiological characteristics and yield of seed beans (Phaseolus vulgaris). Sci Agric 14:234–238

    Google Scholar 

  • Kataria S, Jain M, Tripathi DK, Singh VP (2020) Involvement of nitrate reductase-dependent nitric oxide production in magnetopriming-induced salt tolerance in soybean. Physiol Plant 168(2):422–436

    CAS  PubMed  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotech J 7(6):512–526

    CAS  Google Scholar 

  • Kaya C, Aydemir S, Akram NA, Ashraf M (2018) Epibrassinolide application regulates some key physio-biochemical attributes as well as oxidative defense system in maize plants grown under saline stress. J Plant Growth Regul 37(4):1244–1257

    CAS  Google Scholar 

  • Keramat B, Kalantari KM, Arvin MJ (2010) Effects of methyl jasmonate treatment on alleviation of cadmium damages in soybean. J Plant Nutr 33(7):1016–1025

    CAS  Google Scholar 

  • Khadri M, Tejera N, Lluch C (2007) Sodium chloride–ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environ Exp Bot 60(2):211–218

    CAS  Google Scholar 

  • Khan M, Iqbal N, Masood A, Khan N (2012) Variation in salt tolerance of wheat cultivars: role of glycinebetaine and ethylene. Pedosphere 22(6):746–754

    CAS  Google Scholar 

  • Khan MIR, Khan NA (2013) Salicylic acid and jasmonates: approaches in abiotic stress tolerance. J Plant Biochem Physiol 1(4):e113

    Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32(1):121–132

    Google Scholar 

  • Khan MS, Yu X, Kikuchi A, Asahina M, Watanabe KN (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26(1):125–134

    CAS  Google Scholar 

  • Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54(392):2553–2562

    CAS  PubMed  Google Scholar 

  • Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62(4):1399–1409

    CAS  PubMed  Google Scholar 

  • Kim J, Baek D, Park HC, Chun HJ, Oh DH, Lee MK, Cha JY, Kim WY, Kim MC, Chung WS (2013) Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol Plant 6(2):337–349

    CAS  PubMed  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    CAS  PubMed  Google Scholar 

  • Kishor PK, Sangam S, Amrutha R, Laxmi PS, Naidu K, Rao KS, Rao S, Reddy K, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 10:424–438

    Google Scholar 

  • Klein A, Hüsselmann L, Keyster M, Ludidi N (2018) Exogenous nitric oxide limits salt-induced oxidative damage in maize by altering superoxide dismutase activity. South Afr J Bot 115:44–49

    CAS  Google Scholar 

  • Krishna K, Mahadevaswamy M (2019) The effect of exogenous application of gibberellic acid on two salt stressed paddy cultivars during seed germination. Int J Res Appl Sci Eng Technol 7:327–332

    Google Scholar 

  • Kumar B, Singh B (1996) Effect of plant hormones on growth and yield of wheat irrigated with saline water. Ann Agric Res 17:209–212

    Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Vankova R, Tanaka M, Seki M, Ham LH, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. Plos One 7(8):e42411. https://doi.org/10.1371/journal.pone.0042411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X, Guo X, Wang Q, Wang Y, Zhao D, Yao L, Wang S, Liu G, Li T (2017) Overexpression of Ms DREB 6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89(3):510–526

    CAS  PubMed  Google Scholar 

  • Liu M, Pan T, Allakhverdiev SI, Yu M, Shabala S (2020) Crop halophytism: an environmentally sustainable solution for global food security. Trend Plant Sci 25(7):630–634

    CAS  Google Scholar 

  • Lotfi R, Ghassemi-Golezani K, Pessarakli M (2020) Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean (Vigna radiata L.) under salinity stress. Biocatal Agric Biotechnol 26:101635

    Google Scholar 

  • Lu C, Shao Y, Li L, Chen A, Xu W, Wu K, Luo Y, Zhu B (2011) Overexpression of SlERF1 tomato gene encoding an ERF-type transcription activator enhances salt tolerance. Russ J Plant Physiol 58(1):118–125

    CAS  Google Scholar 

  • Lu S, Su W, Li H, Guo Z (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2-and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47(2):132–138

    CAS  PubMed  Google Scholar 

  • Ma X, Zhang J, Burgess P, Rossi S, Huang B (2018) Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in cree** bentgrass (Agrostis stolonifera). Environ Exp Bot 145:1–11

    CAS  Google Scholar 

  • Ma X, Zhang J, Huang B (2016) Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environ Exp Bot 125:1–11

    CAS  Google Scholar 

  • Mahouachi J, Argamasilla R, Gómez-Cadenas A (2012) Influence of exogenous glycine betaine and abscisic acid on papaya in responses to water-deficit stress. J Plant Growth Regul 31(1):1–10

    CAS  Google Scholar 

  • Mane A, Deshpande T, Wagh V, Karadge B, Samant J (2011) A critical review on physiological changes associated with reference to salinity. Int J Environ Sci 1(6):1192–1216

    Google Scholar 

  • Mangena P (2020) Role of benzyladenine seed priming on growth and physiological and biochemical response of soybean plants grown under high salinity stress condition. Int J Agron. https://doi.org/10.1155/2020/8847098

    Article  Google Scholar 

  • Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66(3):277–288

    CAS  PubMed  Google Scholar 

  • Miao Y, Luo X, Gao X, Wang W, Li B, Hou L (2020) Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. Sci Hortic 272:109577

    CAS  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177(3):181–189

    CAS  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gómez L, Volokita M, Tal M, Foyer CH, Guy M (2003) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554(3):417–421

    CAS  PubMed  Google Scholar 

  • Mohsin SM, Hasanuzzaman M, Parvin K, Fujita M (2020) Pretreatment of wheat (Triticum aestivum L.) seedlings with 2, 4-D improves tolerance to salinity-induced oxidative stress and methylglyoxal toxicity by modulating ion homeostasis, antioxidant defenses, and glyoxalase systems. Plant Physiol Biochem 152:221–231

    CAS  PubMed  Google Scholar 

  • Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS (2021) A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. Physiol Plant 172:1269–1290

    CAS  PubMed  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54

    CAS  Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77(3):367–379

    CAS  PubMed  Google Scholar 

  • Naeem M, Basit A, Ahmad I, Mohamed HI, Wasila H (2020) Effect of salicylic acid and salinity stress on the performance of tomato plants. Gesunde Pflanzen 72(4):393–402

    CAS  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34(2):137–148

    CAS  PubMed  Google Scholar 

  • Nawaz K, Ashraf M (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci 196(1):28–37

    CAS  Google Scholar 

  • Naz M, Hussain S, Ashraf I, Farooq M (2022) Exogenous application of proline and phosphorus help improving maize performance under salt stress. J Plant Nutr 1–9.

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168(8):807–815

    CAS  PubMed  Google Scholar 

  • Neill S, Barros R, Bright J et al (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    CAS  PubMed  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2(9):e258

    PubMed  PubMed Central  Google Scholar 

  • Nieves-Cordones M, Al Shiblawi FR, Sentenac H (2016) Roles and transport of sodium and potassium in plants. The alkali metal ions: Their role for life. Springer, Cham, pp 291–324

    Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23(6):2169–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nour KAM, Mansour NTS, Eisa GSA (2012) Effect of some antioxidants on some physiological and anatomical characters of snap bean plants under sandy soil conditions. NY Sci J 5:1–9

    Google Scholar 

  • O’Brien JA, Benková E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451

    PubMed  PubMed Central  Google Scholar 

  • Okon OG (2019) Effect of salinity on physiological processes in plants. Microorganisms in saline environments: strategies and functions. Springer, Cham, pp 237–262

    Google Scholar 

  • Park J, Kim YS, Kim SG, Jung JH, Woo JC, Park CM (2011) Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol 156(2):537–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Apse MP, Blumwald E (2011) Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Adv Botanical Research, vol 57. Elsevier, Amsterdam, pp 405–443

    Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp seedlings under copper stress. AmJ Plant Sci. https://doi.org/10.4236/ajps.2013.44100

    Article  Google Scholar 

  • Qadeer U, Ahmed M, Hassan FU, Akmal M (2019) Impact of nitrogen addition on physiological, crop total nitrogen, efficiencies and agronomic traits of the wheat crop under rainfed conditions. Sustainability 11(22):6486

    CAS  Google Scholar 

  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208

    CAS  PubMed  Google Scholar 

  • Radi A, Shaddad M, El-Enany A, Omran F (2001) Interactive effects of plant hormones (GA3 or ABA) and salinity on growth and some metabolites of wheat seedlings. Plant Nutrition. Springer, Cham, pp 436–437

    Google Scholar 

  • Rahman A, Mostofa MG, Nahar K, Hasanuzzaman M, Fujita M (2016) Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Rev Bras Bot 39(2):393–407

    Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):255–263

    Google Scholar 

  • Rais L, Masood A, Inam A, Khan N (2013) Sulfur and nitrogen co-ordinately improve photosynthetic efficiency, growth and proline accumulation in two cultivars of mustard under salt stress. J Plant Biochem Physiol 1:1. https://doi.org/10.4172/jpbp.1000101

    Article  Google Scholar 

  • Ramireddy E, Hosseini SA, Eggert K, Gillandt S, Gnad H, von Wirén N, Schmülling T (2018) Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiol 177(3):1078–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed F, Anjum NA, Masood A, Sofo A, Khan NA (2020) The key roles of salicylic acid and sulfur in plant salinity stress tolerance. J Plant Growth Regul 1–14.

  • Rath H, Sappa PK, Hoffmann T, Salazar MG, Reder A, Steil L, Hecker M, Bremer E, Mäder U, Völker U (2020) Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol 22(8):2266–3286

    Google Scholar 

  • Rezaei MA, Kaviani B, Jahanshahi H (2012) Application of exogenous glycine betaine on some growth traits of soybean (Glycine max L.) cv. DPX in drought stress conditions. Sci Res Essay 7(3):432–436

    CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci 104(49):19631–19636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, Bhati KK, Kim ST, Gupta R (2020) Ethylene: a master regulator of salinity stress tolerance in plants. Biomolecules 10(6):959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rober-Kleber N, Albrechtová JT, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol 131(3):1302–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roshdy AED, Alebidi A, Almutairi K, Al-Obeed R, Elsabagh A (2021) The effect of salicylic acid on the performances of salt stressed strawberry plants, enzymes activity, and salt tolerance index. Agronomy 11:775

    CAS  Google Scholar 

  • Rossatto T, Maia MAC, Amaral MN, Auler PA, Woloski R, Júnior AM, Braga EJ, Dode LB, Pinto LS (2018) Morphophysiological analysis and expression of proline genes in rice (‘Oryza sativa’ L. cv. BRS AG) subjected to in’vitro’ salt stress. Aus J Crop Sci 12(2):243

    CAS  Google Scholar 

  • Sá FVdS, Brito ME, Silva LdA, Moreira RC, Paiva EPd, Souto LS (2020) Exogenous application of phytohormones mitigates the effect of salt stress on Carica papaya plants. Rev Bras Eng Agric Ambient 24:170–175

    Google Scholar 

  • Saddiq MS, Afzal I, Iqbal S, Hafeez MB, Raza A (2021a) Low leaf sodium content improves the grain yield and physiological performance of wheat genotypes in saline-sodic soil. Pesqui Agropecu Trop 51:e67663–e67663

    Google Scholar 

  • Saddiq MS, Iqbal S, Hafeez MB, Ibrahim AM, Raza A, Fatima EM, Baloch H, Woodrow P, Ciarmiello LF (2021b) Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11(6):1193

    CAS  Google Scholar 

  • Saeedipour S (2013) Relationship of grain yield, ABA and proline accumulation in tolerant and sensitive wheat cultivars as affected by water stress. Proc Natl Acad Sci India Sect Biolog Sci 83(3):311–315

    CAS  Google Scholar 

  • Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A, Hussan MU, Sarwar MI (2019) A review: impact of salinity on plant growth. Nat Sci 17(1):34–40

    Google Scholar 

  • Sagervanshi A, Naeem A, Geilfus CM, Kaiser H, Mühling KH (2021) One-time abscisic acid priming induces long-term salinity resistance in Vicia faba: changes in key transcripts, metabolites, and ionic relations. Physiol Plant 172(1):146–161

    CAS  PubMed  Google Scholar 

  • Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214(6):821–828

    CAS  PubMed  Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151(3):257–279

    CAS  PubMed  Google Scholar 

  • Shabbir R, Singhal RK, Mishra UN, Chauhan J, Javed T, Hussain S et al (2022) Combined abiotic stresses: challenges and potential for crop improvement. Agronomy 12(11):2795

    Google Scholar 

  • Shabbir R, Javed T, Hussain S, Ahmar S, Naz M, Zafar H, Pandey S et al (2022b) Calcium homeostasis and potential roles to combat environmental stresses in plants. South Afr J Bot 148:683–693

    CAS  Google Scholar 

  • Shaddad MA, Abd El-Samad HM, Mostafa D (2013) Role of gibberellic acid (GA3) in improving salt stress tolerance of two wheat cultivars. Int J Plant Physiol Bioch 5(4):50–57

    Google Scholar 

  • Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, Gómez C, Mattson N, Nasim W, Garcia-Sanchez F (2020) Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10(7):938

    CAS  Google Scholar 

  • Shahzad K, Hussain S, Arfan M, Hussain S, Waraich EA, Zamir S, Saddique M, Rauf A, Kamal KY, Hano C (2021) Exogenously applied gibberellic acid enhances growth and salinity stress tolerance of maize through modulating the morpho-physiological biochemical and molecular attributes. Biomolecules 11(7):1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaikha A, Shamsa S, Gabriel A, Kurup S, Cheruth A (2018) Exogenous gibberellic acid ameliorates salinity-induced morphological and biochemical alterations in Portulaca grandiflora. Planta Daninha. https://doi.org/10.1590/S0100-83582017350100082

    Article  Google Scholar 

  • Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    CAS  PubMed  Google Scholar 

  • Sharma N, Abrams S, Waterer D (2005) Uptake, movement, activity, and persistence of an abscisic acid analog (8′ acetylene ABA methyl ester) in marigold and tomato. J Plant Growth Regul 24(1):28–35

    CAS  Google Scholar 

  • Sheteiwy MS, Shao H, Qi W, Daly P, Sharma A, Shaghaleh H, Hamoud YA, El-Esawi MA, Pan R, Wan Q, Lu H (2021) Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. J Sci Food Agric 101(5):2027–2041

    CAS  PubMed  Google Scholar 

  • Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z (2014) Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem 82:209–217

    CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46(1):82–92

    CAS  PubMed  Google Scholar 

  • Song Y, Yang W, Fan H, Zhang X, Sui N (2020) TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat. Plant Sci 300:110624

    CAS  PubMed  Google Scholar 

  • Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105

    CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Syeed S, Khan NA (2010) Physiological aspects of salicylic acid-mediated salinity tolerance in plants. Plant Stress 1:39–46

    Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trend Plant Sci 15(2):89–97

    CAS  Google Scholar 

  • Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166(9):914–925

    CAS  PubMed  Google Scholar 

  • Talebi M, Moghaddam M, Pirbalouti AG (2018) Methyl jasmonate effects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress. Acta Physiol Plant 40(2):1–11

    CAS  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiryaki İ (2007) The role of auxin-signaling gene axr1 in salt stress and jasmonic acid inducible gene expression in Arabidopsis thaliana. J Mol Cell Biology 6:189–195

    Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62(1):1–9

    CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods in enzymology, vol 428. Elsevier, Amsterdam, pp 419–438

    Google Scholar 

  • Vahid T, Soheil K (2019) Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gas-exchange. J Plant Physiol 35:98–105

    Google Scholar 

  • Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, Figueroa CR, Figueroa PM (2016) Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J Exp Bot 67(14):4209–4220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acid 35(4):753–759

    CAS  Google Scholar 

  • Verslues PE (2016) ABA and cytokinins: challenge and opportunity for plant stress research. Plant Mol Biol 91(6):629–640

    CAS  PubMed  Google Scholar 

  • Vetrano F, Moncada A, Miceli A (2020) Use of gibberellic acid to increase the salt tolerance of leaf lettuce and rocket grown in a floating system. Agronomy 10(4):505

    CAS  Google Scholar 

  • Vojta P, Kokáš F, Husičková A, Grúz J, Bergougnoux V, Marchetti CF, Jiskrova E, Ježilová E, Mik V, Ikeda Y (2016) Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. New Biotechnol 33(5):676–691

    CAS  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24(3):842–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30(4):410–421

    CAS  PubMed  Google Scholar 

  • Walker M, Dumbroff E (1981) Effects of salt stress on abscisic acid and cytokinin levels in tomato. Z Pflanzenphysiol 101(5):461–470

    CAS  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A Biotechnology of plant osmotic stress tolerance physiological and molecular considerations (2000) In: IV International Symposium on In Vitro Culture and Horticultural Breeding vol. 285–292.

  • Wang Y, Gong X, Liu W, Kong L, Si X, Guo S, Sun J (2020) Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber. Plant Physiol Biochem 152:147–156

    PubMed  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27(2):327–342

    CAS  PubMed  Google Scholar 

  • Wang YH, Zhang G, Chen Y, Gao J, Sun YR, Sun MF, Chen JP (2019) Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiol Plant 41(6):93

    CAS  Google Scholar 

  • Wani AS, Tahir I, Ahmad SS, Dar RA, Nisar S (2017) Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Sci Hortic 225:48–55

    CAS  Google Scholar 

  • Wasternack C (2014) Action of jasmonates in plant stress responses and development-applied aspects. Biotechnol Adv 32(1):31–39

    CAS  PubMed  Google Scholar 

  • Wei L, Deng XG, Zhu T, Zheng T, Li PX, Wu JQ, Zhang DW, Lin HH (2015) Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front Plant Sci 6:982

    PubMed  PubMed Central  Google Scholar 

  • Wei LX, Lv BS, Li XW, Wang MM, Ma HY, Yang HY, Yang RF, Piao ZZ, Wang ZH, Lou JH (2017) Priming of rice (Oryza sativa L.) seedlings with abscisic acid enhances seedling survival, plant growth, and grain yield in saline-alkaline paddy fields. Field Crop Res 203:86–93

    Google Scholar 

  • Wilson RL, Kim H, Bakshi A, Binder BM (2014) The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol 165:1353–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 8(1):e55431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H (2018) Plant salt tolerance and Na+ sensing and transport. Crop J 6(3):215–225

    Google Scholar 

  • Wu H, Shabala L, Zhou M, Shabala S (2015) Chloroplast-generated ROS dominate NaCl-induced K+ efflux in wheat leaf mesophyll. Plant Signal Behav 10(5):e1013793

    PubMed  PubMed Central  Google Scholar 

  • Wu H, Zhang X, Giraldo JP, Shabala S (2018) It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant Soil 431(1):1–17

    CAS  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148(4):1953–1963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Jia L, Baluška F, Ding G, Shi W, Ye N, Zhang J (2012) PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion. J Exp Bot 63(17):6105–6114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav T, Kumar A, Yadav R, Yadav G, Kumar R, Kushwaha M (2020) Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi J Biol Sci 27(8):2010–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan K, Bian T, He W, Han G, Lv M, Guo M, Lu M (2018) Root abscisic acid contributes to defending photoinibition in Jerusalem artichoke (Helianthus tuberosus L.) under salt stress. Int J Mol Sci 19(12):3934

    PubMed  PubMed Central  Google Scholar 

  • Yang S, **ong X, Arif S, Gao L, Zhao L, Shah IH, Zhang Y (2020) A calmodulin-like CmCML13 from Cucumis melo improved transgenic Arabidopsis salt tolerance through reduced shoot’s Na+, and also improved drought resistance. Plant Physiol Biochem 155:271–283

    CAS  PubMed  Google Scholar 

  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66(1–2):73

    CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217(2):523–539

    CAS  PubMed  Google Scholar 

  • Yang CY, Huang YC, Ou SL (2017) ERF73/HRE1 is involved in H2O2 production via hypoxia-inducible Rboh gene expression in hypoxia signaling. Protoplasma 254(4):1705–1714

    CAS  PubMed  Google Scholar 

  • Yavaş İ, Hussain S (2022) Recent progress on melatonin-induced salinity tolerance in plants: an overview. Turkish J Agric Food Sci Technol 10(8):1447–1454

    Google Scholar 

  • Yu Y, Li Y, Yan Z, Duan X (2021) The Role of Cytokinins in Plant under Salt Stress. J Plant Growth Regul 1-13

  • Yue J, You Y, Zhang L, Fu Z, Wang J, Zhang J, Guy RD (2019) Exogenous 24-epibrassinolide alleviates effects of salt stress on chloroplasts and photosynthesis in Robinia pseudoacacia L. seedlings. J Plant Growth Regul 38(2):669–682

    CAS  Google Scholar 

  • Zavaleta-Mancera HA, López-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-García C, Vargas-Suárez M, Ougham H (2007) Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J Plant Physiol 164(12):1572–1582

    CAS  PubMed  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175(1):36–50

    CAS  PubMed  Google Scholar 

  • Zhang JS, **e C, Shen YG, Chen SY (2001) A two-component gene (NTHK1) encoding a putative ethylene-receptor homolog is both developmentally and stress regulated in tobacco. Theor Appl Genet 102(6):815–824

    CAS  Google Scholar 

  • Zhang K, Guo N, Lian L, Wang J, Lv S, Zhang J (2011) Improved salt tolerance and seed cotton yield in cotton (Gossypium hirsutum L.) by transformation with betA gene for glycinebetaine synthesis. Euphytica 181(1):1–16

    CAS  Google Scholar 

  • Zhang Z, Li F, Li D, Zhang H, Huang R (2010) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232(3):765–774

    CAS  PubMed  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134(2):849–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XC, Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562(1–3):189–192

    CAS  PubMed  Google Scholar 

  • Zhou S, Chen X, Zhang X, Li Y (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett 30(2):369–376

    CAS  PubMed  Google Scholar 

  • Zhu G, An L, Jiao X, Chen X, Zhou G, McLaughlin N (2019) Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chil J Agric Res 79(3):415–424

    Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Jiang X, Zhang J, He Y, Zhu X, Zhou X, Gong H, Yin J, Liu Y (2020) Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol Biochem 156:209–220

    CAS  PubMed  Google Scholar 

  • Zongshuai W, **angnan L, **ancan Z, Shengqun L, Fengbin S, Fulai L, Yang W, **aoning Q, Fahong W, Zhiyu Z (2017) Salt acclimation induced salt tolerance is enhanced by abscisic acid priming in wheat. Plant Soil Environ 63(7):307–314

    Google Scholar 

  • Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170(2):220–224

    PubMed  Google Scholar 

  • Zulfiqar F, Akram NA, Ashraf M (2020) Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251(1):1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SH had the idea for the article and prepared outlines for the manuscript, SH, MBH, RA, and KM carried out the literature search, SH, MA, TJ, NZ and AR wrote the manuscript, SE and XR critically revised the manuscript. All the authors have read and approved the manuscript.

Corresponding authors

Correspondence to Saddam Hussain or **aolong Ren.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Parvaiz Ahmad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Hafeez, M.B., Azam, R. et al. Deciphering the Role of Phytohormones and Osmolytes in Plant Tolerance Against Salt Stress: Implications, Possible Cross-Talk, and Prospects. J Plant Growth Regul 43, 38–59 (2024). https://doi.org/10.1007/s00344-023-11070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11070-4

Keywords

Navigation