Log in

Roles of Nitric Oxide in Conferring Multiple Abiotic Stress Tolerance in Plants and Crosstalk with Other Plant Growth Regulators

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a free-radical gasotransmitter signaling molecule associated with a varied spectrum of signal transduction pathways linked to inducing cross-adaptation against abiotic stresses. It has crucial roles from seed germination to plant maturity, depending upon its cellular concentration. The functional cross-talk of NO among different stress signaling cascades leads to alteration in the expression of developmental genes that regulate biosynthesis and function of plant growth regulators (PGRs). NO-PGRs and secondary signaling compounds cross-talk trigger reprogramming of stress-responsive gene expressions, transcriptional gene modulations, redox regulating machinery, oxidative metabolisms, and multiple regulatory pathways under plant abiotic stress. Recent findings suggest NO as critical components of numerous plant signaling network that interplays with auxin, gibberellins (GA), abscisic acid (ABA), ethylene (ET), jasmonic acid (JA), brassinosteroids (BRs), H2O2, melatonin, hydrogen sulfide (H2S), salicylic acid (SA), and other PGRs to modulate growth and development under multiple stresses. Considering the importance of NO signaling crosstalk under stress adaptation, in this review, we point out the biosynthesis and metabolism of NO and its crosstalk with numerous other signaling compounds. Further, recent cellular and molecular advances in NO signaling cross-talk under abiotic stress adaptations also have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The present paper covered the concluded remarks on No Nitric oxide cross-talking covered in various findings studied by researchers.

References

  • Ahmad P, Abass Ahanger M, Nasser Alyemeni M, Wijaya L, Alam P, Ashraf M (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13:64–72

    CAS  Google Scholar 

  • Alamri S, Ali HM, Khan MIR, Singh VP, Siddiqui MH (2020) Exogenous nitric oxide requires endogenous hydrogen sulfide to induce the resilience through sulfur assimilation in tomato seedlings under hexavalent chromium toxicity. Plant Physiol Biochem 155:20–34

    CAS  PubMed  Google Scholar 

  • Amooaghaie R, Enteshari S (2017) Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. Ecotoxicol Environ Saf 139:210–218

    CAS  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubiś J (2009) Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in cucumber. J Plant Growth Regul 28:177–186

    CAS  Google Scholar 

  • Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63

    PubMed  PubMed Central  Google Scholar 

  • Arora D, Bhatla SC (2017) Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radic Biol Med 106:315–328

    CAS  PubMed  Google Scholar 

  • Arora D, Jain P, Singh N, Kaur H, Bhatla SC (2016) Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res 50:291–303

    CAS  PubMed  Google Scholar 

  • Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA (2017) Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci Pol Res 24:2273–2285

    CAS  Google Scholar 

  • Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69:3401–3411

    CAS  PubMed  Google Scholar 

  • Aydın B, Nalbantoğlu B (2011) Effects of cold and salicylic acid treatments on nitrate reductase activity in spinach leaves. Turk J Biol 35:443–448

    Google Scholar 

  • Bai S, Yao T, Li M, Guo X, Zhang Y, Zhu S, He Y (2014) PIF3 is involved in the primary root growth inhibition of Arabidopsis induced by nitric oxide in the light. Mol Plant 7:616–625

    CAS  PubMed  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma J, Lupiáñez JA, del Río LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    CAS  PubMed  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Rodríguez-Serrano M, Esteban FJ, Fernández-Ocana A, Chaki M, Romero-Puertas MC, Valderrama R, Sandalio LM, del Río LA (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 57:1785–1793

    CAS  PubMed  Google Scholar 

  • Basylinski DA, Hollocher TC (1985) Evidence from the reaction between trioxodinitrate (II) and 15NO that trioxidinitrate (II) decomposes into nitrosyl hydride and nitrite in neutral aqueous solution. Inorg Chem 24:4285–4288

    Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152. https://doi.org/10.3389/fpls.2016.00152

    Article  PubMed  PubMed Central  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    CAS  PubMed  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bethke PC, Libourel IGL, Jones RL (2006) Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57:517–526

    CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    CAS  PubMed  Google Scholar 

  • Camejo D, del Carmen R-P, Rodríguez-Serrano M, Sandalio LM, Lázaro JJ, Jiménez A, Sevilla F (2013) Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteom 79:87–99

    CAS  Google Scholar 

  • Campos FV, Oliveira JA, Pereira MG, Farnese FS (2019) Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. Planta 250:1475–1489

    CAS  PubMed  Google Scholar 

  • Chen WW, Yang JL, Qin C, ** CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YS, Lo SF, Sun PK, Lu CA, Ho TH, Yu SM (2015) A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotech J 13:105–116

    CAS  Google Scholar 

  • Chmielowska-Bąk J, Lefèvre I, Lutts S, Deckert J (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170:1585–1594

    PubMed  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LS (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui X, Zhang Y, Chen X, ** H, Wu X (2009) Effects of exogenous nitric oxide protects tomato plants under copper stress. In: 2009 3rd International Conference on Bioinformatics and Biomedical Engineering. 1–7

  • Damiani I, Pauly N, Puppo A, Brouquisse R, Boscari A (2016) Reactive oxygen species and nitric oxide control early steps of the legume—rhizobium symbiotic interaction. Front Plant Sci 7:454. https://doi.org/10.3389/fpls.2016.00454

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41:203–236

    CAS  PubMed  Google Scholar 

  • de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484

    PubMed  Google Scholar 

  • Del Río LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81

    PubMed  Google Scholar 

  • del Río LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    PubMed  Google Scholar 

  • Desikan R, Soheila AH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314–16318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    CAS  PubMed  Google Scholar 

  • Diao Q, Song Y, Shi D, Qi H (2017) Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00203

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong F, Simon J, Rienks M, Lindermayr C, Rennenberg H (2015) Effects of rhizopheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on soil CO2 concentration, soil N availability and N source. Tree Physiol 35:910–920

    CAS  PubMed  Google Scholar 

  • Dubovskaya LV, Bakakina YS, Kolesneva EV, Sodel DL, McAinsh MR, Hetherington AM, Volotovski ID (2011) cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytol 191:57–69

    CAS  PubMed  Google Scholar 

  • Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K (2019) Cyclic nucleotide gated channels (CNGCs) in plant signallingCurrent knowledge and perspectives. J Plant Physiol 241:153035

    CAS  PubMed  Google Scholar 

  • Falak N, Imran QM, Hussain A, Yun BW (2021) Transcription factors as the “Blitzkrieg” of plant defense: A pragmatic view of nitric oxide’s role in gene regulation. Int J Mol Sci 22:522. https://doi.org/10.3390/ijms22020522

    Article  CAS  PubMed Central  Google Scholar 

  • Fan HF, Du CX, Ding L, Xu YL (2013a) Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta Physiol Plant 35:2707–2719

    CAS  Google Scholar 

  • Fan HF, Du CX, Guo SR (2013b) Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exp Bot 86:52–59

    CAS  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    CAS  PubMed  Google Scholar 

  • Fatma M, Masood A, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521. https://doi.org/10.3389/fpls.2016.00521

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng J, Wang C, Chen Q, Chen H, Ren B, Li X, Zuo J (2013) S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nat Commun 4:1529

    PubMed  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Nat Acad Sci USA 108:18506–18511

    PubMed  PubMed Central  Google Scholar 

  • Floryszak-Wieczorek J, Milczarek G, Arasimowicz M, Ciszewski A (2006) Do nitric oxide donors mimic endogenous NO-related response in plants? Planta 224:1363–1372

    CAS  PubMed  Google Scholar 

  • Floryszak-Wieczorek J, Arasimowicz-Jelonek M, Izbiańska K (2016) The combined nitrate reductase and nitrite-dependent route of NO synthesis in potato immunity to Phytophthora infestans. Plant Physiol Biochem 108:468–477

    CAS  PubMed  Google Scholar 

  • Ford PC, Wink DA, Stanbury DM (1993) Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 326:1–3

    CAS  PubMed  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2015) Defning robust redox signalling within the context of the plant cell. Plant Cell Environ 38:239

    CAS  PubMed  Google Scholar 

  • Freschi L (2013) Nitric oxide and phytohormone interactions: Current status and perspectives. Front Plant Sci 4:1–22

    Google Scholar 

  • Fröhlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404

    PubMed  Google Scholar 

  • García MJ, Lucena C, Romera FJ, Alcántara E, Pérez-Vicente R (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J Exp Bot 61:3885–3899

    PubMed  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl-channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116–11121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcıa-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    PubMed  PubMed Central  Google Scholar 

  • Gaupels F, Furch AC, Zimmermann MR, Chen F, Kaever V, Buhtz A, Kehr J, Sarioglu H, Kogel KH, Durner J (2016) Systemic induction of NO-, redox-, and cGMP signaling in the pumpkin extra fascicular phloem upon local leaf wounding. Front Plant Sci 7:154. https://doi.org/10.3389/fpls.2016.00154

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ SciTech 16:1807–1828

    CAS  Google Scholar 

  • Gisone P, Dubner D, PÉREZ MD, Michelin S, Puntarulo S (2004) The role of nitric oxide in the radiation-induced effects in the develo** brain. In Vivo 18:281–292

    CAS  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Bogatek R (2010a) Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 232:1397–1407

    CAS  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Dębska K, Andryka P, Bogatek R (2010b) The beneficial effect of small toxic molecules on dormancy alleviation and germination of apple embryos is due to NO formation. Planta 232:999–1005

    CAS  PubMed  Google Scholar 

  • González A, de Los Ángeles Cabrera M, Henríquez MJ, Contreras RA, Morales B, Moenne A (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158:1451–1462

    PubMed  PubMed Central  Google Scholar 

  • Goretski J, Hollocher TC (1988) Trap** of nitric oxide produced during denitrification by extracellular hemoglobin. J Biol Chem 263:2316–2323

    CAS  PubMed  Google Scholar 

  • Gouvea CMCP, Souza JF, Magalhaes CAN, Martins IS (1997) NO·–releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187

    CAS  Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochem 69:2609–2615

    CAS  Google Scholar 

  • Gross I, Durner J (2016) In search of enzymes with a role in 3’, 5’-cyclic guanosine monophosphate metabolism in plants. Front Plant Sci 7:576. https://doi.org/10.3389/fpls.2016.00576

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillas I, Zachowski A, Baudouin E (2011) A matter of fat: interaction between nitric oxide and sphingolipid signaling in plant cold response. Plant Signal Behav 6:140–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Tan J, Zhuo C, Wang C, **ang B, Wang Z (2014) Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotech J 12:601–612

    CAS  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2011) The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion 11:537–543

    CAS  PubMed  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2016) Reactive nitrogen species in mitochondria and their implications in plant energy status and hypoxic stress tolerance. Front Plant Sci 7:369. https://doi.org/10.3389/fpls.2016.00369

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta KJ, Igamberdiev AU, Manjunatha G et al (2011) The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Sci 181:520–526

    CAS  PubMed  Google Scholar 

  • Gupta K, Sengupta A, Chakraborty M, Gupta B (2016) Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01343

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Srivastava S, Seth CS (2017) 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant Soil 411:483–498

    CAS  Google Scholar 

  • Hajihashemi S, Skalicky M, Brestic M, Pavla V (2020) Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiol Biochem 154:657–664

    CAS  PubMed  Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in the control of plant function. Plant Sci 181:555–559

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan MB, Al Mahmud J, Baluska F, Fujita M (2018) Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotech Rep 12:77–92

    Google Scholar 

  • He HY, He LF, Gu MH, Li XF (2012) Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Sci 183:123–130

    CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Van Zanten M, Mandon J, Voesenek LA, Harren FJ, Cristescu SM, Møller IM, Mur LA (2012) Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J Exp Bot 63:5581–5591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry Y, Ducrocq C, Drapier JC, Servent D, Pellat C, Guissani A (1991) Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J 20:1–15

    CAS  PubMed  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Shah JK, Hill RD (2010) Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiol Plant 138:393–404

    CAS  PubMed  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Quesada MJ, Traverso JÁ, Alché J (2016) NADPH oxidase-dependent superoxide production in plant reproductive tissues. Front Plant Sci 7:359. https://doi.org/10.3389/fpls.2016.00359

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpets YV, Kolupaev YE, Yastreb TO, Oboznyi AI (2016) Induction of heat resistance in wheat seedlings by exogenous calcium, hydrogen peroxide, and nitric oxide donor: functional interaction of signal mediators. Russ J Plant Physiol 63:490–498

    CAS  Google Scholar 

  • Kaya C, Ashraf M, Wijaya L, Ahmad P (2019) The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiol Biochem 143:119–128

    CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020a) Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiol Plant 168:345–360

    CAS  PubMed  Google Scholar 

  • Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P (2020b) Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol Plant 168:256–277

    CAS  PubMed  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hort 126:402–407

    CAS  Google Scholar 

  • Khan MI, Nazir F, Asgher M, Per TS, Khan NA (2015a) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015b) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:642

    Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Siddiqui MH (2017) Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 68:91–102

    CAS  PubMed  Google Scholar 

  • Khan MN, Siddiqui MH, AlSolami MA, Alamri S, Hu Y, Ali HM, Al-Amri AA, Alsubaie QD, Al-Munqedhi BM, Al-Ghamdi A (2020) Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiol Biochem 156:278–290

    CAS  PubMed  Google Scholar 

  • Khokon MD, Okuma EI, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    CAS  PubMed  Google Scholar 

  • Kolbert ZS, Barroso JB, Brouquisse R, Corpas FJ, Gupta KJ, Lindermayr C, Loake GJ, Palma JM, Petřivalský M, Wendehenne D, Hancock JT (2019) A forty year journey: the generation and roles of NO in plants. Nitric Oxide 93:53–70

    CAS  PubMed  Google Scholar 

  • Kong X, Wang T, Li W, Tang W, Zhang D, Dong H (2016) Exogenous nitric oxide delays salt induced leaf senescence in cotton (Gossypium hirsutum L.). Acta Physiol Plant 38:1–9

    Google Scholar 

  • Krasuska U, Ciacka K, Gniazdowska A (2017) Nitric oxide-polyamines cross-talk during dormancy release and germination of apple embryos. Nitric Oxide 68:38–50

    CAS  PubMed  Google Scholar 

  • Kushwaha BK, Singh S, Tripathi DK, Sharma S, Prasad SM, Chauhan DK, Kumar V, Singh VP (2019) New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. J Hazard Mat 361:134–140

    CAS  Google Scholar 

  • Lamattina L, Beligni MV, Garcia-Mata C, Laxalt AM (2001) Method of enhancing the metabolic function and the growing conditions of plants and seeds. US Patent 6, 242

  • León J, Costa-Broseta Á (2020) Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. Plant Cell Environ 43:1–15

    Google Scholar 

  • Leshem YY, Wills RBH (1998) Harnessing senescence delaying gases nitric oxide and nitrous oxide: a novel approach to postharvest control of fresh horticultural produce. Biol Plant 41:1–10

    CAS  Google Scholar 

  • Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB, Corpas FJ (2011) Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 6:789–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Gong B, Xu K (2014) Interaction of nitric oxide and polyamines involves antioxidants and physiological strategies against chilling-induced oxidative damage in Zingiber officinale Roscoe. Sci Hort 170:237–248

    CAS  Google Scholar 

  • Li ZG, Luo LJ, Sun YF (2015) Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide-induced thermotolerance in maize seedlings. Russ J Plant Physiol 62:507–514

    CAS  Google Scholar 

  • Liao WB, Huang GB, Yu JH, Zhang ML (2012) Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol Biochem 58:6–15

    CAS  PubMed  Google Scholar 

  • Liu YG, Shi L, Ye NH, Liu R, Jia WS, Zhang JH (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    CAS  PubMed  Google Scholar 

  • Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61:2979–2990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WZ, Kong DD, Gu XX, Gao HB, Wang JZ, **a M, Gao Q, Tian LL, Xu ZH, Bao F, Hu Y (2013) Cytokinins can act as suppressors of nitric oxide in Arabidopsis. Proc Nat Acad Sci USA 110:1548–1553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yang X, Zhu S, Wang Y (2016) Postharvest application of MeJA and NO reduced chilling injury in cucumber (Cucumis sativus) through inhibition of H2O2 accumulation. Postharvest Biol Tech 119:77–83

    CAS  Google Scholar 

  • Liu M, Zhang H, Fang X, Zhang Y, ** C (2018) Auxin acts downstream of ethylene and nitric oxide to regulate magnesium deficiency-induced root hair development in Arabidopsis thaliana. Plant Cell Physiol 59:1452–1465

    CAS  PubMed  Google Scholar 

  • Liu X, Yin L, Deng X, Gong D, Du S, Wang S, Zhang Z (2020) Combined application of silicon and nitric oxide jointly alleviated cadmium accumulation and toxicity in maize. J Hazard Mat 395:122679

    CAS  Google Scholar 

  • Lombardi L, Ceccarelli N, Picciarelli P, Sorce C, Lorenzi R (2010) Nitric oxide and hydrogen peroxide involvement during programmed cell death of Sechium edule nucellus. Physiol Plant 140:89–102

    CAS  PubMed  Google Scholar 

  • Lozano-Juste J, Leon J (2010) Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol 152:891–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Juste J, León J (2010) Nitric oxide modulates sensitivity to ABA. Plant Signal Behav 5:314–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Juste J, León J (2011) Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol 156:1410–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    CAS  PubMed  Google Scholar 

  • Lv X, Ge S, Jalal Ahammed G, **ang X, Guo Z, Yu J, Zhou Y (2017) Crosstalk between nitric oxide and MPK1/2 mediates cold acclimation-induced chilling tolerance in tomato. Plant Cell Physiol 58:1963–1975

    CAS  PubMed  Google Scholar 

  • Lytvyn DI, Raynaud C, Yemets AI, Bergounioux C, Blume YB (2016) Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress. Front Plant Sci 7:430. https://doi.org/10.3389/fpls.2016.00430

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Marsolais F, Bykova NV, Igamberdiev AU (2016) Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination. Front Plant Sci 7:138. https://doi.org/10.3389/fpls.2016.00138

    Article  PubMed  PubMed Central  Google Scholar 

  • Majláth I, Szalai G, Soós V, Sebestyén E, Balázs E, Vanková R, Dobrev PI, Tari I, Tandori J, Janda T (2012) Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol Plant 145:296–314

    PubMed  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: a synergistic signaling approach. J Stress Physiol Biochem 7(2):34

    Google Scholar 

  • Mioto PT, Mercier H (2013) Abscisic acid and nitric oxide signaling in two different portions of detached leaves of Guzmania monostachia with CAM up-regulated by drought. J Plant Physiol 170:996–1002

    CAS  PubMed  Google Scholar 

  • Mohn MA, Thaqi B, Fischer-Schrader K (2019) Isoform-specific NO synthesis by Arabidopsis thaliana nitrate reductase. Plants 8:67

    CAS  PubMed Central  Google Scholar 

  • Molassiotis A, Job D, Ziogas V, Tanou G (2016) Citrus plants: A model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought. Front Plant Sci 7:229. https://doi.org/10.3389/fpls.2016.00229

    Article  PubMed  PubMed Central  Google Scholar 

  • Montilla-Bascón G, Rubiales D, Hebelstrup KH, Mandon J, Harren FJ, Cristescu SM, Mur LA, Prats E (2017) Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis. Sci Rep 7:1–15

    Google Scholar 

  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 283:32957–32967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJ, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052. https://doi.org/10.1093/aobpla/pls052

    Article  CAS  PubMed  Google Scholar 

  • Nabi RB, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    CAS  PubMed  Google Scholar 

  • Oliveira H, Salgado I, Sodek L (2013) Nitrite decreases ethanol production by intact soybean roots submitted to oxygen deficiency: a role for mitochondrial nitric oxide synthesis? Plant Signal Behav 8:e23578

    PubMed  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537

    PubMed  PubMed Central  Google Scholar 

  • Ozfidan-Konakci C, Yildiztugay E, Elbasan F, Kucukoduk M, Turkan I (2020) Hydrogen sulfide (H2S) and nitric oxide (NO) alleviate cobalt toxicity in wheat (Triticum aestivum L.) by modulating photosynthesis, chloroplastic redox and antioxidant capacity. J Hazard Mat 388:122061

    CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C (2008) Nitric oxide responsive genes and promoters in Arabidopsis thaliana: A bioinformatics approach. J Exp Bot 59:177–186

    CAS  PubMed  Google Scholar 

  • Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK (2017) Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01582

    Article  PubMed  PubMed Central  Google Scholar 

  • Peck S, Mittler R (2020) Plant signaling in biotic and abiotic stress. J Exp Bot 71:1649–1651. https://doi.org/10.1093/jxb/eraa051

    Article  CAS  PubMed  Google Scholar 

  • Poór P, Czékus Z, Ördög A (2019) Role of nitric oxide in physiological and stress responses of plants under darkness. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley, New York, pp 515–531

    Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    CAS  PubMed  Google Scholar 

  • Rodríguez-serrano MA, Romero-puertas MC, Zabalza AN, Corpas FJ, Gómez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueño MC, Luis A, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    PubMed  PubMed Central  Google Scholar 

  • Romera FJ, García MJ, Alcántara E, Pérez-Vicente R (2011) Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by strategy I plants. Plant Signal Behav 6:167–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, Sandalio LM (2016) Nitric oxide level is self-regulating and also regulates its ROS partners. Front Plant Sci 7:316. https://doi.org/10.3389/fpls.2016.00316

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosales EP, Iannone MF, Groppa MD, Benavides MP (2012) Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42:857–865

    CAS  PubMed  Google Scholar 

  • Roszer T (2012a) Nitric oxide synthesis in leaf peroxisomes and in plant-type mitochondria. In: Roszer T (ed) The biology of subcellular nitric oxide. Springer, New York, pp 67–80

    Google Scholar 

  • Roszer T (2012b) Nitric oxide synthesis in the chloroplast. In: Roszer T (ed) The biology of subcellular nitric oxide. Springer, New York, pp 49–66

    Google Scholar 

  • Roszer T, Kiss-Tóth E, Rózsa D et al (2010) Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons. Cell Tissue Res 342:191–203

    CAS  PubMed  Google Scholar 

  • Ruan HH, Shen WB, Xu LL (2004) Nitric oxide involved in the abscisic acid induced proline accumulation in wheat seedling leaves under salt stress. Acta Bot Sin 46:1307–1315

    CAS  Google Scholar 

  • Rubbo H, Parthasarathy S, Barnes S, Kirk M, Kalyanaraman B, Freeman BA (1995) Nitric oxide inhibition of lipoxygenasedependent liposome and low density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen containing oxidized lipid derivatives. Arch Biochem Biophys 324:15–25

    CAS  PubMed  Google Scholar 

  • Rumer S, Kapuganti JG, Kaiser WM (2009) Oxidation of hydroxylamines to NO by plant cells. Plant Signal Behav 4:853–855

    PubMed  PubMed Central  Google Scholar 

  • Saito N, Yoshimasa N, Mori IC, Murata Y (2009) Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal Behav 4:119–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    CAS  PubMed  Google Scholar 

  • Sánchez-Vicente I, María G, Fernández-Espinosa OL (2019) Nitric oxide molecular targets: reprogramming plant development upon stress. J Exp Bot 70:4441–4460

    PubMed  PubMed Central  Google Scholar 

  • Santisree P, Sanivarapu H, Gundavarapu S, Sharma KK, Bhatnagar-Mathur P (2020) Nitric oxide as a signal in inducing secondary metabolites during plant stress. In: Mérillon JM, Ramawat KG (eds) Co-evolution of secondary metabolites. Springer, Cham, pp 593–621

    Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nat 459:1071–1078

    CAS  Google Scholar 

  • Santos MP, Zandonadi DB, de Sá AFL, Costa EP, de Oliveira CJL, Perez LE, Façanha AR, Bressan-Smith R (2020) Abscisic acid-nitric oxide and auxin interaction modulates salt stress response in tomato roots. Theor Exp Plant Physiol 32(4):301–313

    CAS  Google Scholar 

  • Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R, Terenzi H (2007) Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem Biophy Res Commun 361:1048–1053

    CAS  Google Scholar 

  • Shan C, Zhou Y, Liu M (2015) Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma 252:1397–1405

    CAS  PubMed  Google Scholar 

  • Shao R, Wang K, Shangguan Z (2010) Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise. J Plant Physiol 167:472–479

    CAS  PubMed  Google Scholar 

  • Shi H, Liu W, Wei Y, Ye T (2017) Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis. J Exp Bot 68:1239–1249

    CAS  PubMed  Google Scholar 

  • Si T, Wang X, Wu L, Zhao C, Zhang L, Huang M, Cai J, Zhou Q, Dai T, Zhu JK, Jiang D (2017) Nitric oxide and hydrogen peroxide mediate wounding-induced freezing tolerance through modifications in photosystem and antioxidant system in wheat. Front Plant Sci 8:1284

    PubMed  PubMed Central  Google Scholar 

  • Siddiqui M, Alamri SA, Mutahhar YY, Al-Khaishany MA, Al-Qutami HM, Nasir Khan MA (2017) Nitric Oxide and calcium induced physiobiochemical changes in tomato (Solanum Lycopersicum) plant under heat stress. Fresen Environ Bull 26:1663–1672

    CAS  Google Scholar 

  • Simaei M, Khavari-Nejad RA, Bernard F (2012) Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in NaCl-stressed soybean plants. Am J Plant Sci 3(10):1495–1503

    Google Scholar 

  • Simon R, Dresselhaus T (2015) Peptides take centre stage in plant signalling. J Exp Bot 66:5135–5138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Bhatla SC (2018) Nitric oxide regulates lateral root formation through modulation of ACC oxidase activity in sunflower seedlings under salt stress. Plant Signal Behav 13:e1473683

    PubMed  PubMed Central  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    CAS  Google Scholar 

  • Singh S, Husain T, Kushwaha BK, Suhel M, Fatima A, Mishra V, Singh SK, Tripathi DK, Rai M, Prasad SM, Dubey NK (2020) Regulation of ascorbate-glutathione cycle by exogenous nitric oxide and hydrogen peroxide in soybean roots under arsenate stress. J Haz Mat. https://doi.org/10.1016/j.jhazmat.2020.123686

    Article  Google Scholar 

  • Sivakumaran A, Akinyemi A, Mandon J, Cristescu SM, Hall MA, Harren FJ, Mur LA (2016) ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility. Front Plant Sci 7:709. https://doi.org/10.3389/fpls.2016.00709

    Article  PubMed  PubMed Central  Google Scholar 

  • Slinger D, Tenison K (2005) Salinity glove box guide: NSW Murray & Murrumbidgee catchments. An initiative of the Southern salt action team. NSW Department of Primary Industries, Newington

    Google Scholar 

  • Song L, Ding W, Zhao M, Sun B, Zhang L (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458

    CAS  PubMed  Google Scholar 

  • Song L, Ding W, Shen J, Zhang Z, Bi Y, Zhang L (2008) Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Sci 175:826–832

    CAS  Google Scholar 

  • Song XG, She XP, Wang J, Sun YC (2011) Ethylene inhibits darkness-induced stomatal closure by scavenging nitric oxide in guard cells of Vicia faba. Funct Plant Biol 38:767–777

    CAS  PubMed  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    CAS  PubMed  Google Scholar 

  • Sturms R, Dispirito AA, Hargrove MS (2011) Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions. Biochem 50:3873–3878

    CAS  Google Scholar 

  • Sun H, Bi Y, Tao J, Huang S, Hou M, Xue R, Liang Z, Gu P, Yoneyama K, **e X, Shen Q (2016) Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice. Plant Cell Env 39:1473–1484

    CAS  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlap** roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    CAS  PubMed  Google Scholar 

  • Tavares CP, Vernal J, Delena RA, Lamattina L, Cassia R, Terenzi H (2014) S-nitrosylation influences the structure and DNA binding activity of AtMYB30 transcription factor from Arabidopsis thaliana. Biochim Biophys Acta 1844:810–817

    CAS  PubMed  Google Scholar 

  • Taylor JE, McAinsh MR (2004) Signalling crosstalk in plants: emerging issues. J Exp Bot 55:147–149

    CAS  PubMed  Google Scholar 

  • Terrile MC, París R, Calderón-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongué C (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70:492–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thalineau E, Truong HN, Berger A, Fournier C, Boscari A, Wendehenne D, Jeandroz S (2016) Cross-regulation between N metabolism and nitric oxide (NO) signaling during plant immunity. Front Plant Sci 7:472. https://doi.org/10.3389/fpls.2016.00472

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian X, He M, Wang Z, Zhang J, Song Y, He Z, Dong Y (2015) Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul 77:343–356

    CAS  Google Scholar 

  • Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C (2011) Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 286:18277–18289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tossi V, Cassia R, Bruzzone S, Zocchi E, Lamattina L (2012) ABA says NO to UV-B: a universalresponse? Trends Plant Sci 17:510–517

    CAS  PubMed  Google Scholar 

  • Tossi V, Lamattina L, Cassia R (2013) Pharmacological and genetical evidence supporting nitric oxide requirement for 2, 4-epibrassinolide regulation of root architecture in Arabidopsis thaliana. Plant Signal Behav 8:e24712

    PubMed  PubMed Central  Google Scholar 

  • Tossi VE, Lamattina L, Jenkins G, Cassia R (2014) UV-B-induced stomatal closure in Arabidopsis is regulated by the UVR8 photoreceptor in an NO-dependent mechanism. Plant Physiol 164:2220–2230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tun NN, Holk A, Scherer GF (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett 509:174–176

    CAS  PubMed  Google Scholar 

  • Turkan I (2017) Emerging roles for ROS and RNS—versatile molecules in plants. J Exp Bot 68:4413–4416. https://doi.org/10.1093/jxb/erx236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X (2010) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167:1298–1306

    CAS  PubMed  Google Scholar 

  • Wang Y, Li L, Cui W, Xu S, Shen W, Wang R (2012) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351:107–119

    CAS  Google Scholar 

  • Wang Y, Loake GJ, Chu C (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00314

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Guo Y, Jia L, Chu H, Zhou S, Chen K, Wu D, Zhao L (2014) Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. Plant Physiol 164:2184–2196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Liu Y, Tan X, Liu H, Zeng G, Hu X, Jian H, Gu Y (2015a) Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress. Environ Sci Pol Res 22:3489–3497

    CAS  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015b) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112:613–618

    CAS  PubMed  Google Scholar 

  • Wang H, Ji F, Zhang Y, Hou J, Liu W, Huang J, Liang W (2019) Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity. Plant Cell Environ 42:2340–2356

    CAS  PubMed  Google Scholar 

  • Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W (2020) Roles of nitric oxide in heavy metal stress in plants: cross-talk with phytohormones and protein S-nitrosylation. Environ Pol. https://doi.org/10.1016/j.envpol.2020.113943

    Article  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    CAS  PubMed  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    CAS  PubMed  Google Scholar 

  • Wink DA, Osawa Y, Darbyshire JF, Jones CR, Eshenaur SC, Nims RW (1993) Inhibition of cytochrome P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys 300:115–123

    CAS  PubMed  Google Scholar 

  • Wu H, Zheng Y, Liu J, Zhang H, Chen H (2016a) Heme oxygenase-1 delays gibberellin-induced programmed cell death of rice aleurone layers subjected to drought stress by interacting with nitric oxide. Front Plant Sci 6:1267. https://doi.org/10.3389/fpls.2015.01267

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Su N, Zhang X, Liu Y, Cui J, Liang Y (2016b) Hydrogen peroxide, nitric oxide and UV RESISTANCE LOCUS8 interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts. Sci Rep 6:1–12

    Google Scholar 

  • Wu P, **ao C, Cui J, Hao B, Zhang W, Yang Z, Ahammed GJ, Liu H, Cui H (2020) Nitric oxide and its interaction with hydrogen peroxide enhance plant tolerance to low temperatures by improving the efficiency of the calvin cycle and the ascorbate-glutathione cycle in cucumber seedlings. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10242-w

    Article  Google Scholar 

  • **ong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    CAS  PubMed  Google Scholar 

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    CAS  Google Scholar 

  • Xu LL, Fan ZY, Dong YJ, Kong J, Bai XY (2015) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biol Planta 59:171–182

    CAS  Google Scholar 

  • Xu YF, Chu XT, Fu JJ, Yang LY, Hu TM (2016) Crosstalk of nitric oxide with calcium induced tolerance of tall fescue leaves to high irradiance. Biol Plant 60:376–384

    Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355:1477–1488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Ji J, Wang H, Harris-Shultz KR, Abd Allah EF, Luo Y, Guan Y, Hu X (2016) Carbon monoxide interacts with auxin and nitric oxide to cope with iron deficiency in Arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00112

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Deng X, Wang X, Wang J, Du S, Li Y (2019) The calcium sensor OsCBL1 modulates nitrate signaling to regulate seedling growth in rice. PLoS ONE 14:e0224962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan HM, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ 39:120–135

    CAS  PubMed  Google Scholar 

  • Zaharah SS, Singh Z (2011) Postharvest nitric oxide fumigation alleviates chilling injury, delays fruit ripening and maintains quality in cold-stored ‘Kensington Pride’mango. PostharvestBiol Tech 60:202–210

    CAS  Google Scholar 

  • Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, Inupakutika MA, Mittler R (2016) ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67:5381–5390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006a) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119

    Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006b) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    CAS  PubMed  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007a) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    CAS  PubMed  Google Scholar 

  • Zhang F, Wang Y, Yang Y, Wu HAO, Wang DI, Liu J (2007b) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    PubMed  Google Scholar 

  • Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Shen L, Li F, Meng D, Sheng J (2011) Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. J Agric Food Chem 59:9351–9357

    CAS  PubMed  Google Scholar 

  • Zhang X, Liu Y, Liu Q, Zong B, Yuan X, Sun H, Wang J, Zang L, Ma Z, Liu H, He S (2018) Nitric oxide is involved in abscisic acid-induced photosynthesis and antioxidant system of tall fescue seedlings response to low-light stress. Environ Exp Bot 155:226–238

    CAS  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Funct Plant Biol 28:1055–1061

    CAS  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mat 239:302–307

    Google Scholar 

  • Zhu XF, Zhu CQ, Wang C, Dong XY, Shen RF (2017) Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice. J Exp Bot 68:753–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Gao H, Lu M, Hao C, Pu Z, Guo M, Hou D, Chen LY, Huang X (2019) Melatonin-nitric oxide crosstalk and their roles in the redox network in plants. Int J Mol Sci. https://doi.org/10.3390/ijms20246200

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are very thankful to the researchers whose excellent work has been cited in the presented study, which helps us to prepare an up to date review.

Author information

Authors and Affiliations

Authors

Contributions

Author contribution statement: RKS and HSJ conceived the idea. All authors contributed equally in writing and figure and table preparation. All authors have read and approved the final version of review.

Corresponding author

Correspondence to Hanuman Singh Jatav.

Ethics declarations

Conflict of interest

The authors declare they do not have any conflict of interest.

Ethical Approval

All the authors have been agreed to submit it.

Consent to Participate

Before the submission of paper, all the author have given the consent to publish.

Consent to Publish

All the authors have given the consent to publish.

Additional information

Handling Editor: M. Naeem.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, R.K., Jatav, H.S., Aftab, T. et al. Roles of Nitric Oxide in Conferring Multiple Abiotic Stress Tolerance in Plants and Crosstalk with Other Plant Growth Regulators. J Plant Growth Regul 40, 2303–2328 (2021). https://doi.org/10.1007/s00344-021-10446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10446-8

Keywords

Navigation