Log in

Plasma-based nanoarchitectonics for vertically aligned dual-metal carbon nanotube field-effect transistor (VA-DMCNFET) device: effect of plasma parameters on transistor properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we intend to show the role of plasma parameters on the performance of the simulated device Plasma-Assisted Vertically Aligned Dual-Metal Carbon Nanotube Field-Effect Transistor (VA-DMCNFET) for the first time. Here, vertically aligned semiconducting Carbon Nanotube (CNT) synthesized using Plasma-Enhanced Chemical Vapor Deposition (PECVD) technique is implemented as the channel. The proposed device shows significant improvement in performance over conventional Nanowire Field-Effect Transistor (NWFET). Next, the device geometry and electrical properties are related to the PECVD parameters by means of a physical model. The DC and analog performance of VA-DMCNFET at various plasma parameters corresponding to different values of CNT channel radius (for fixed CNT channel length) and different values of CNT channel length (for fixed CNT channel radius) is analyzed. It is observed that lower values of plasma parameters are essential for higher values of drain current, transconductance, output conductance, cutoff frequency, and lower values of threshold voltage and channel resistance. On the other hand, higher values of plasma parameters are essential for better ION/IOFF current ratio, early voltage, and gain of the proposed device. By altering the plasma parameters, efficiency of the device can be improved leading to better real-life applicability and performance. The results obtained from this study have been verified with the existing experimental observations for validation of chosen mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.K. Gupta, A. Raman, Performance analysis of electrostatic plasma-based do**less nanotube TFET. Appl. Phys. A 126, 573 (2020). https://doi.org/10.1007/s00339-020-03736-7

    Article  ADS  Google Scholar 

  2. H.M. Fahad, M.M. Hussain, High-performance silicon nanotube tunneling fet for ultralow-power logic applications. IEEE Trans. Electron Devices 60(3), 1034 (2013). https://doi.org/10.1109/TED.2013.2243151

    Article  ADS  Google Scholar 

  3. C. Qiu, Z. Zhang, M. **ao, Y. Yang, D. Zhong, L.-M. Peng, Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322), 271 (2017)

    Article  ADS  Google Scholar 

  4. I. Santolia, A. Tewari, S.C. Sharma, R. Sharma, Effect of do** on growth and field emission properties of spherical carbon nanotube tip placed over cylindrical surface. Phys. Plasmas 21(6), 063508 (2014)

    Article  ADS  Google Scholar 

  5. A. Rochefort, D.R. Salahub, P. Avouris, Effects of finite length on the electronic structure of carbon nanotubes. J. Phys. Chem. B 103(4), 641–646 (1999)

    Article  Google Scholar 

  6. T. Mizutani, H. Ohnaka, Y. Okigawa, S. Kishimoto, Y. Ohno, A study of preferential growth of carbon nanotubes with semiconducting behavior grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 106(7), 073705 (2009). https://doi.org/10.1063/1.3234389

    Article  ADS  Google Scholar 

  7. D. Phokharatkul, Y. Ohno, H. Nakano, S. Kishimoto, T. Mizutani, High-density horizontally aligned growth of carbon nanotubes with Co nanoparticles deposited by arc-discharge plasma method. Appl. Phys. Lett. 93(5), 053112 (2008)

    Article  ADS  Google Scholar 

  8. Y. Ono, S. Kishimoto, Y. Ohno, T. Mizutani, Thin film transistors using PECVD-grown carbon nanotubes. Nanotechnology 21(20), 205202 (2010)

    Article  ADS  Google Scholar 

  9. S.C. Sharma, A. Tewari, Effect of plasma parameters on growth and field emission of electrons from cylindrical metallic carbon nanotube surfaces. Phys. Plasmas 18(8), 083503 (2011)

    Article  ADS  Google Scholar 

  10. A. Tewari, S.C. Sharma, Theoretical modeling of temperature dependent catalyst-assisted growth of conical carbon nanotube tip by plasma enhanced chemical vapor deposition process. Phys. Plasmas 22(2), 023505 (2015)

    Article  ADS  Google Scholar 

  11. T. Kato, R. Hatakeyama (2010), Growth of single-walled carbon nanotubes by plasma CVD. J. Nanotechnol.

  12. C. Suresh, N. Sharma, Phys. Plasmas 22(12), 123517 (2015)

    Article  ADS  Google Scholar 

  13. R. Gupta, S.C. Sharma, R. Sharma, Mechanisms of plasma-assisted catalyzed growth of carbon nanofibres: a theoretical modelling. Plasma Sources Sci Technol 26(2), 024006 (2017)

    Article  ADS  Google Scholar 

  14. Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, G.-S. Park, W.B. Choi, J.M. Kim, Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature. J. Vac. Sci. Technol. A: Vac., Surf., Films 18(4), 1864–1868 (2000)

    Article  ADS  Google Scholar 

  15. L. Nougaret, H. Happy, G. Dambrine, V. Derycke, J.-P. Bourgoin et al., 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 94, 243505 (2009)

    Article  ADS  Google Scholar 

  16. S. **g Guo, A. Hasan, G.B. Javey, M. Lundstrom, Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4(6), 715–721 (2005). https://doi.org/10.1109/TNANO.2005.858601

    Article  ADS  Google Scholar 

  17. Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J.F. Gibbons, Y. Nishi, H. Dai, Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4(2), 317–321 (2004)

    Article  ADS  Google Scholar 

  18. T. Mizutani, Y. Ohno, S. Kishimoto, Electrical properties of carbon nanotube FETs. 2008 International Conference on Advanced Semiconductor Devices and Microsystems, pp. 1–8,(2008).doi: https://doi.org/10.1109/ASDAM.2008.4743290

  19. F. Bashir, S.A. Loan, M. Rafat, A.R.M. Alamoud, S.A. Abbasi, A high-performance source engineered charge plasma-based schottky MOSFET on SOI. IEEE Trans. on Electron Devices 62(10), 3357 (2015)

    Article  ADS  Google Scholar 

  20. S.K. Srivastava, A.K. Shukla, V.D. Vankar, V. Kumar, Growth, structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films 492(1–2), 124–130 (2005). https://doi.org/10.1016/j.tsf.2005.07.283

    Article  ADS  Google Scholar 

  21. X. Yang, K. Mohanram, Modeling and performance investigation of the double-gate carbon nanotube transistor. IEEE Electron Device Lett. 32(3), 231–233 (2011). https://doi.org/10.1109/LED.2010.2095826

    Article  ADS  Google Scholar 

  22. ATLAS User’s Guide, SILVACO Int., Santa Clara, CA, USA, Version 5.26.1.R; (2018)

  23. L. Liu, C. Qiu, D. Zhong, J. Si, Z. Zhang, L.-M. Peng, Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale 9(27), 9615–9621 (2017)

    Article  Google Scholar 

  24. G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, B.-S. Choi, T. Lee, Channel-length and gate-bias dependence of contact resistance and mobility for In2O3 nanowire field effect transistors. J. Appl. Phys. 102(8), 084508 (2007)

    Article  ADS  Google Scholar 

  25. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447 (1998)

    Article  ADS  Google Scholar 

  26. M.H. Moaiyeri, F. Razi, Performance analysis and enhancement of 10-nm GAA CNTFET-based circuits in the presence of CNT-metal contact resistance. J Comput. Electron. 16, 240–252 (2017)

    Article  Google Scholar 

  27. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006)

    Book  Google Scholar 

  28. K Ostrikov Xu Shuyan P-A Nanofabrication (2007). From Plasma Sources to Nanoassembly, Wiley-VCH Germany https://doi.org/10.1002/9783527611553

  29. G.J. Brady, A.J. Way, N.S. Safron, H.T. Evensen, P. Gopalan, M.S. Arnold, Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2(9), e1601240–e1601240 (2016). https://doi.org/10.1126/sciadv.1601240

    Article  ADS  Google Scholar 

  30. A. Graham, G. Duesberg, W. Hoenlein et al., How do carbon nanotubes fit into the semiconductor roadmap? Appl. Phys. A 80, 1141–1151 (2005)

    Article  Google Scholar 

  31. A.D. Franklin, S.O. Koswatta, D.B. Farmer, J.T. Smith, L. Gignac, C.M. Breslin, J. Tersoff et al., Carbon nanotube complementary wrap-gate transistors. Nano Lett. 13(6), 2490–2495 (2013). https://doi.org/10.1021/nl400544q

    Article  ADS  Google Scholar 

  32. T. Dang, L. Anghel, R. Leveugle, CNTFET basics and simulation. Int. Conf. Des. Test Integr. Syst. Nanoscale Technol., DTIS 2006, 28–33 (2006). https://doi.org/10.1109/DTIS.2006.1708731

    Article  Google Scholar 

  33. S. Rewari, V. Nath, S. Haldar, S.S. Deswal, R.S. Gupta, Improved analog and AC performance with increased noise immunity using nanotube junctionless field effect transistor (NJLFET). Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-0583-9

    Article  Google Scholar 

  34. S.S. Alabsi, A.Y. Ahmed, J.O. Dennis, M.H.M. Khir, A.S. Algamili, A review of carbon nanotubes field effect-based biosensors. IEEE Access 8, 69509–69521 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Author Mansha Kansal is thankful to Dr. Sonam Rewari for valuable discussions.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Not Applicable.

Corresponding author

Correspondence to Suresh C. Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansal, M., Sharma, S.C. Plasma-based nanoarchitectonics for vertically aligned dual-metal carbon nanotube field-effect transistor (VA-DMCNFET) device: effect of plasma parameters on transistor properties. Appl. Phys. A 128, 28 (2022). https://doi.org/10.1007/s00339-021-05096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05096-2

Keywords

Navigation