Log in

Effects of strain-compensated AlGaN/InGaN superlattice barriers on the optical properties of InGaN light-emitting diodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, metalorganic chemical vapor deposition (MOCVD)-grown InGaN multiple-quantum-well (MQW) light-emitting diodes (LEDs) with Al0.03Ga0.97N and Al0.03Ga0.97N/In0.01Ga0.99N superlattices-barrier layers on c-plane sapphire were studied for the influence of the strain-compensated barrier on the optical properties of the LEDs. High-resolution X-ray diffraction (HRXRD) analysis shows that the LEDs with a strain-compensated superlattice barrier (SC-SLB) have better interface quality than those using AlGaN. This difference in quality may result from the alleviation of strain relaxation in superlattice layers to improve the crystalline perfection of the epitaxial structures. It was also found that the degree of the exciton localization effect rises considerably as InGaN grows directly on the AlGaN barrier layers. However, the increase in the strength of the polarization fields within the MQWs (as evaluated from bias-dependent photoluminescence (PL) measurement) could reduce the radiative efficiency of the LEDs and shift their PL peaks toward long wavelengths. With suitable control of crystalline quality and the reduced quantum-confined Stark effect in the MQWs, the SC-SLB LEDs operating at 150-mA-current show a 22.3% increase in light output power as compared to their conventional counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Taguchi, Proc. SPIE 7422, 74220B (2009)

    Article  ADS  Google Scholar 

  2. H.K. Cho, J.Y. Lee, J.H. Song, P.W. Yu, G.M. Yang, C.S. Kim, J. Appl. Phys. 91, 1104 (2002)

    Article  ADS  Google Scholar 

  3. Z.L. Fang, D.Q. Lin, J.Y. Kang, J.F. Kong, W.Z. Shen, Nanotechnology 20, 235401 (2009)

    Article  ADS  Google Scholar 

  4. H. Morkoç, Handbook of Nitride Semiconductors and Devices, vol. 1 (Wiley-VCH, Berlin, 2008), Chap. 2

    Book  Google Scholar 

  5. C.F. Huang, T.Y. Tang, J.J. Huang, W.Y. Shiao, C.C. Yang, C.W. Hsu, L.C. Chen, Appl. Phys. Lett. 89, 051913 (2006)

    Article  ADS  Google Scholar 

  6. C.B. Soh, S.Y. Chow, L.Y. Tan, H. Hartono, W. Liu, S.J. Chua, Appl. Phys. Lett. 93, 173107 (2008)

    Article  ADS  Google Scholar 

  7. H. Zhao, R.A. Arif, Y.K. Ee, N. Tansu, IEEE J. Quantum Electron. 45, 66 (2009)

    Article  Google Scholar 

  8. C.T. Wan, Y.K. Su, H.C. Yu, C.Y. Huang, W.H. Lin, W.C. Chen, H.C. Tseng, J.B. Horng, C. Hu, S. Tsau, IEEE Photonics Technol. Lett. 21, 1474 (2009)

    Article  ADS  Google Scholar 

  9. R. Czernecki, S. Krukowski, G. Targowski, P. Prystawko, M. Sarzynski, M. Krysko, G. Kamler, I. Grzegory, M. Leszczynski, S. Porowski, Appl. Phys. Lett. 91, 231914 (2007)

    Article  ADS  Google Scholar 

  10. G. Pozina, J.P. Bergman, B. Monemar, T. Takeuchi, H. Amano, I. Akasaki, J. Appl. Phys. 88, 2677 (2000)

    Article  ADS  Google Scholar 

  11. T.S. Ko, T.C. Lu, T.C. Wang, J.R. Chen, R.C. Gao, M.H. Lo, H.C. Kuo, S.C. Wang, J.L. Shen, J. Appl. Phys. 104, 093106 (2008)

    Article  ADS  Google Scholar 

  12. Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, S.P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998)

    Article  ADS  Google Scholar 

  13. M.E. Aumer, S.F. LeBoeuf, B.F. Moody, S.M. Bedair, K. Nam, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 80, 3099 (2002)

    Article  ADS  Google Scholar 

  14. J.H. Chen, Z.C. Feng, H.L. Tsai, J.R. Yang, P. Li, C. Wetzel, T. Detchprohm, J. Nelson, Thin Solid Films 498, 123 (2006)

    Article  ADS  Google Scholar 

  15. T. Wang, J. Bai, S. Sakai, J.K. Ho, Appl. Phys. Lett. 78, 2617 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Lung Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, CL., Fan, GC. & Lee, YS. Effects of strain-compensated AlGaN/InGaN superlattice barriers on the optical properties of InGaN light-emitting diodes. Appl. Phys. A 104, 319–323 (2011). https://doi.org/10.1007/s00339-010-6140-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6140-z

Keywords

Navigation