Log in

Impact of thermal treatments on epitaxial GayIn1−yAs1−xBi x layers luminescent properties

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, thick Ga0.485In0.515As1−xBi x epitaxial layers were grown on semi-insulating (100)-oriented InP:Fe substrates by molecular beam epitaxy. For investigation of the buffer layer influence on Ga0.485In0.515As1−xBi x properties, two compositions of buffers were used: lattice matched to InP:Fe substrate—Ga0.477In0.523As, and lattice matched to bismide layer—Ga0.434In0.566As. The buffer layer thickness varied from 100 to 650 nm. Three hundred-nm-thick bismide layers were grown at 280–300 °C substrate temperature with growth rate of 300 nm/h. Structural investigations of ω − 2θ rocking curves measured for (004) reflex revealed the incorporation of Bi up to 3.6% in quaternary compound. Bismide layer surface inspection by atomic force microscopy demonstrated roughness of about 0.65 nm. Despite the fact that structures are 100’s of nanometers thick, reciprocal space map** measurement demonstrated that both the buffer and the bismide layers are fully strained. It has also been revealed that rapid annealing at the temperature range of 550–700 °C of Ga0.485In0.515As1−xBi x layers improves photoluminescence intensity, extends carrier lifetime and enhances electron mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alberi K, Dubon OD, Walukiewicz W, Yu KM, Bertulis K, Krotkus A (2007) Valence band anticrossing in GaBi x As1−x. Appl Phys Lett 91:051909-1–051909-3

    Article  Google Scholar 

  2. Feng G, Yoshimoto M, Oe K, Chayahara A, Horino Y (2005) New III–V semiconductor InGaAsBi alloy grown by molecular beam epitaxy. Jpn J Appl Phys 44:L1161–L1163

    Article  Google Scholar 

  3. Carrier P, Wei SH (2004) Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends. Phys Rev B 70:035212-1–035212-9

    Article  Google Scholar 

  4. Fluegel B, Francoeur S, Mascarenhas A, Tixier S, Young EC, Tiedje T (2006) Giant spin-orbit bowing in GaAs1−xBi x . Phys Rev Lett 97:067205

    Article  Google Scholar 

  5. Petropoulos JP, Zhong Y, Zide JMO (2011) Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl Phys Lett 99:031110-1–031110-3

    Article  Google Scholar 

  6. Alberi K, Wu J, Walukiewicz W et al (2007) Valence-band anticrossing in mismatched III–V semiconductor alloys. Phys Rev B 75:045203-1–045203-6

    Article  Google Scholar 

  7. Devenson J, Pačebutas V, Butkutė R, Baranov A, Krotkus A (2012) Structure and optical properties of InGaAsBi with up to 7% bismuth. Appl Phys Express 5:015503-1–015503-3

    Article  Google Scholar 

  8. Zhong Y, Dongmo PB, Petropoulos JP, Zide JMO (2012) Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y. Appl Phys Lett 100:112110-1–112110-4

    Google Scholar 

  9. Zhou S, Qi M, Ai L, Wang Sh, Xu A, Guo Q (2017) Growth and electrical properties of high-quality InGaAsBi thin films using gas source molecular beam epitaxy. Jpn J Appl Phys 56:035505-1–035505-5

    Google Scholar 

  10. Butkutė R, Pačebutas V, Čechavičius B, Nedzinskas R, Selskis A, Arlauskas A, Krotkus A (2014) Photoluminescence at up to 2.4 μm wavelengths from GaInAsBi/AlInAs quantum wells. J Cryst Growth 391:116–120

    Article  Google Scholar 

  11. Gu Y, Zhang YG, Chen XY, Ma YJ, ** SP, Du B, Li H (2016) Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP. Appl Phys Lett 108:032102-1–032102-4

    Google Scholar 

  12. Aspnes DE (1973) Third-derivative modulation spectroscopy with low-field electroreflectance. Surf Sci 37:418–442

    Article  Google Scholar 

  13. Gladysiewicz M, Kudrawiec R, Wartak MS (2015) 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates. J Appl Phys 118:055702-1–055702-10

    Article  Google Scholar 

  14. Krotkus A, Coutaz JL (2005) Non-stoichiometric semiconductor materials for terahertz optoelectronics applications. Semicond Sci Technol 20:S142–S150

    Article  Google Scholar 

  15. Čechavičius B, Adomavičius R, Koroliov A, Krotkus A (2011) Thermal annealing effect on photoexcited carrier dynamics in GaBi x As1−x. Semicond Sci Technol 26:085033-1–085033-5

    Google Scholar 

  16. Butkutė R, Niaura G, Pozingytė E, Čechavičius B, Selskis A, Skapas M, Karpus V, Krotkus A (2017) Bismuth quantum dots in annealed GaAsBi/AlAs quantum wells. Nanoscale Res Lett 12:436-1–436-7

    Google Scholar 

  17. Lui KPH, Hegmann FA (2001) Ultrafast carrier relaxation in radiation-damaged silicon-on-sapphire studied by optical-pump-terahertz-probe experiments. Appl Phys Lett 78:3478–3480

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Research Council of Lithuania (Grant No. P-MIP-17-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Stanionytė.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanionytė, S., Pačebutas, V., Čechavičius, B. et al. Impact of thermal treatments on epitaxial GayIn1−yAs1−xBi x layers luminescent properties. J Mater Sci 53, 8339–8346 (2018). https://doi.org/10.1007/s10853-018-2145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2145-3

Keywords

Navigation