Log in

Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We introduce and study the Chaplygin systems with gyroscopic forces. This natural class of nonholonomic systems has not been treated before. We put a special emphasis on the important subclass of such systems with magnetic forces. The existence of an invariant measure and the problem of Hamiltonization are studied, both within the Lagrangian and the almost-Hamiltonian framework. In addition, we introduce problems of rolling of a ball with the gyroscope without slip** and twisting over a plane and over a sphere in \({\mathbb {R}}^n\) as examples of gyroscopic SO(n)-Chaplygin systems. We describe an invariant measure and provide examples of \(SO(n-2)\)-symmetric systems (ball with gyroscope) that allow the Chaplygin Hamiltonization. In the case of additional SO(2)-symmetry, we prove that the obtained magnetic geodesic flows on the sphere \(S^{n-1}\) are integrable. In particular, we introduce the generalized Demchenko case in \({\mathbb {R}}^n\), where the inertia operator of the system is proportional to the identity operator. The reduced systems are automatically Hamiltonian and represent the magnetic geodesic flows on the spheres \(S^{n-1}\) endowed with the round-sphere metric, under the influence of a homogeneous magnetic field. The magnetic geodesic flow problem on the two-dimensional sphere is well known, but for \(n>3\) was not studied before. We perform explicit integrations in elliptic functions of the systems for \(n=3\) and \(n=4\) and provide the case study of the solutions in both situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Demchenko’s PhD advisor, Anton Bilimović (1879–1970), was a distinguished student of Peter Vasilievich Voronec (1871–1923) and one of the founders of Belgrade’s Mathematical Institute. We note that some recent results [see Borisov and Tsiganov (2020); Borisov et al. (2021)] are inspired by Bilimović’s work in nonholonomic mechanics (Bilimovitch 1913a, b, 1914; Bilimovic 1915; Bilimovich 1916).

  2. One can compare the form of Eq. (2.4) with the compact form of the Voronec equations obtained from the Voronec principle, see, e.g., Dragović et al. (2023).

  3. Let us note that in Ehlers et al. (2005), the term “JK" is used for the associated semi-basic two-form \(\sigma \) on \(T^*S\) given below.

References

  • Akhiezer, N.I.: Elements of the Theory of Elliptic Functions, Transl. Math. Monogr., vol. 79. American Mathematical Society, Providence (1990). (Amsterdam, 1954)

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics, Nauka (1974). English translation: Springer, Berlin (1988). [in Russian]

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, Encylopaedia of Mathematical Sciences 3. Springer, Berlin (1989)

    Google Scholar 

  • Bakša, A.: On geometrisation of some nonholonomic systems. Mat. Vesn. 27, 233–240 (1975) (in Serbian). English transl.: Theor. Appl. Mech. 44(2) (2017), 133–140

  • Bakša, A.: Ehresmann connection in the geometry of nonholonomic systems. Publ. Inst. Math., Nouv. Sér. 91(105), 19–24 (2012)

    MathSciNet  MATH  Google Scholar 

  • Balseiro, P., Garcia-Naranjo, L.: Gauge transformations, twisted Poisson brackets and hamiltonization of nonholonomic systems. Arch. Ration. Mech. Anal. 205, 267–310 (2012). ar**v:1104.0880 [math-ph]

    MathSciNet  MATH  Google Scholar 

  • Bilimovic, A.: A nonholonomic pendulum. Mat. Sb. 29, 234–240 (1915). (in Russian)

  • Bilimovich, A.: Sur les trajectoires d’un systeme nonholonome. Compt. Rendus, Séance 162 (1916)

  • Bilimovitch, A.: Sur les équations du mouvement des systémes conservatifs non holonomes. C.R. 156 (1913)

  • Bilimovitch, A.: Sur les systémes conservatifs non holonomes avec des liaisons dependentes du temps. C.R. 156 (1913)

  • Bilimovitch, A.: Sur les transformationes canoniques des équations du mouvement d’un systéme non holonomes avec des liaisons dependentes du temps. C. R. 158, 1064–1068 (1914)

    MATH  Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    MathSciNet  MATH  Google Scholar 

  • Bobilev, D.K.: About a ball with an iside gyroscope rollong without sliding over the plane. Mat. Sb. (1892)

  • Bolotin, S.V., Kozlov, V.V.: Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom. Izv. RAN. Ser. Mat. 81(4), 3–19 (2017). (Russian). English translation: Izv. Math., 81(2017) 671–687

  • Bolsinov, A.V., Jovanović, B.: Magnetic flows on homogeneous spaces. Commun. Math. Helv 83, 679–700 (2008)

    MathSciNet  MATH  Google Scholar 

  • Bolsinov, A.V., Borisov, A.V., Mamaev, I.S.: Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds. Regul. Chaotic Dyn. 16, 443–464 (2011)

    MathSciNet  MATH  Google Scholar 

  • Bolsinov, A.V., Borisov, A.V., Mamaev, I.S.: Geometrisation of Chaplygins reducing multiplier theorem. Nonlinearity 28, 2307–2318 (2015)

    MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: Chaplygin’s ball rolling problem is Hamiltonian. Mat. Zametki 70(5), 793–795 (2001). (in Russian). English trans: Math. Notes 70(5–6) (2001), 720–723

  • Borisov, A.V., Fedorov, Yu.N.: On two modified integrable problems in dynamics. Mosc. Univer. Mech. Bull. 50(6), 16–18 (1995). (in Russian)

  • Borisov, A.V., Mamaev, I.S.: Rolling of a non-homogeneous ball over a sphere without slip** and twisting. Regul. Chaotic Dyn. 12, 153–159 (2007)

    MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems. Regul. Chaotic Dyn. 13, 443–489 (2008)

    MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S.: Topological analysis of an integrable system related to the rolling of a ball on a sphere. Regul. Chaotic Dyn. 18, 356–371 (2013)

    MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Tsiganov, A.: On rheonomic nonholonomic deformations of the Euler equations proposed by Bilimovich. Theor. Appl. Mech. 47(2), 155–168 (2020). ar**v:2002.07670 [nlin.SI]

    MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Selected Problems on Nonholonomic Mechanics, p. 290. Institute of Computer Science, Moscow-Izhevsk (2005)

    Google Scholar 

  • Borisov, A.V., Fedorov, Yu.N., Mamaev, I.S.: Chaplygin ball over a fixed sphere: an explicit integration. Regul. Chaotic Dyn. 13, 557–571 (2008). ar**v:0812.4718 [nlin.SI]

    MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Bizyaev, I., Mamaev, I.S.: The hierarchy of dynamics of a rigid body rolling without slip** and spinning on a plane and a sphere. Regul. Chaotic Dyn. 18, 277–328 (2013)

    MathSciNet  MATH  Google Scholar 

  • Borisov, A.V., Mamaev, I.S., Tsiganov, A.V.: Non-holonomic dynamics and Poisson geometry. Russ. Math. Surv. 69, 481–538 (2014)

    MATH  Google Scholar 

  • Borisov, A.V., Mikishanina, E.A., Tsiganov, A.V.: On inhomogeneous nonholonomic Bilimovich system. Commun. Nonlinear Sci. Numer. Simul. 94, 105573 (2021)

    MathSciNet  MATH  Google Scholar 

  • Cantrijn, F., Cortes, J., de Leon, M., Martin de Diego, D.: On the geometry of generalized Chaplygin systems. Math. Proc. Camb. Philos. Soc. 132(2), 323–351 (2002). ar**v:math.DS/0008141

    MathSciNet  MATH  Google Scholar 

  • Chaplygin, S.A.: On a rolling sphere on a horizontal plane. Mat. Sb. 24, 139–168 (1903). (in Russian)

  • Chaplygin, S.A.: On the theory of the motion of nonholonomic systems. Theorem on the reducing multiplier. Mat. Sb. 28(2), 303–314 (1911). (in Russian)

  • de León, M.: A historical review on nonholomic mechanics. RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 106, 191–224 (2012)

    MathSciNet  MATH  Google Scholar 

  • Demchenko, V.: Rolling without sliding of a gyroscopic ball over a sphere, doctoral dissertation, University of Belgrade, 1924, pp. 94, printed “Makarije” A.D. Beograd-Zemun. (in Serbian). http://elibrary.matf.bg.ac.rs/handle/123456789/118

  • Dragović, V., Gajić, B., Jovanović, B.: Spherical and planar ball bearing—a study of integrable cases. Regul. Chaotic Dyn. 28, 62–77 (2023), https://doi.org/10.1134/S1560354723010057, in press

  • Dragović, V., Gajić, B., Jovanović, B.: Demchenko’s nonholonomic case of a gyroscopic ball rolling without sliding over a sphere after his 1923 Belgrade doctoral thesis. Theor. Appl. Mech. 47(2), 257–287 (2020). ar**v:2011.03866

    MATH  Google Scholar 

  • Dragović, V., Gajić, B., Jovanović, B.: Spherical and planar ball bearing—nonholonomic systems with an invariant measure. Regul. Chaotic Dyn. 27, 424–442 (2022). ar**v:2208.03009

    MathSciNet  MATH  Google Scholar 

  • Ehlers, K., Koiller, J.: Rubber rolling over a sphere. Regul. Chaotic Dyn. 12, 127–152 (2007). ar**v:math/0612036

    MathSciNet  MATH  Google Scholar 

  • Ehlers, K., Koiller, J.: Cartan meets Chaplygin. Theor. Appl. Mech. 46(1), 15–46 (2019)

    MATH  Google Scholar 

  • Ehlers, K., Koiller, J., Montgomery, R., Rios, P.: Nonholonomic systems via moving frames: Cartan’s equivalence and Chaplygin Hamiltonization. In: Marsden, J.E., Ratiu, T.S. (eds.) The Breadth of Symplectic and Poisson Geometry, Prog. Math., vol. 232. Birkhäuser, Boston (2005) . ar**v:math-ph/0408005

    Google Scholar 

  • Fasso, F., Garcia-Naranjo, L.C., Montaldi, J.: Integrability and dynamics of the \(n\)-dimensional symmetric Veselova top. J. Nonlinear Sci. 29, 1205–1246 (2019). ar**v:1804.09090

    MathSciNet  MATH  Google Scholar 

  • Fedorov, Yu.N.: The motion of a rigid body in a spherical support. Vestn. Mosk. Univer., Ser. I 5, 91–93 (1988). (in Russian)

  • Fedorov, Yu.N., Jovanović, B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and geodesic flows on homogeneous spaces. J. Nonlinear Sci. 14, 341–381 (2004). ar**v: math-ph/0307016

    MathSciNet  MATH  Google Scholar 

  • Fedorov, Yu.N., Kozlov, V.V.: Various aspects of n-dimensional rigid body dynamics. Transl., Ser. 2 Am. Math. Soc. 168, 141–171 (1995)

    MathSciNet  MATH  Google Scholar 

  • Fedorov, Yu.N., Garca-Naranjo, L.C., Marrero, J.C.: Unimodularity and preservation of volumes in nonholonomic mechanics. J. Nonlinear Sci. 25, 203–246 (2015). ar**v:1304.1788

    MathSciNet  MATH  Google Scholar 

  • Gajić, B., Jovanović, B.: Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere. Nonlinearity 32(5), 1675–1694 (2019). ar**v:1805.10610

    MathSciNet  MATH  Google Scholar 

  • Gajić, B., Jovanović, B.: Two integrable cases of a ball rolling over a sphere in \({\mathbb{R} }^n\). Russ. J. Nonlinear Dyn. 15(4), 457–475 (2019)

    MathSciNet  MATH  Google Scholar 

  • Garcia-Naranjo, L.C.: Generalisation of Chaplygin’s reducing multiplier theorem with an application to multi-dimensional nonholonomic dynamics. J. Phys. A: Math. Theor. 52, 205203 (2019). ar**v:1805.06393 [nlin.SI]. 16 pp

    MathSciNet  MATH  Google Scholar 

  • Garcia-Naranjo, L.C.: Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere. Theor. Appl. Mech. 46(1), 65–88 (2019). ar**v:1901.11092 [nlin.SI]

    MATH  Google Scholar 

  • Garcia-Naranjo, L.C., Marrero, J.C.: The geometry of nonholonomic Chaplygin systems revisited. Nonlinearity 33(3), 1297–1341 (2020). ar**v:1812.01422 [math-ph]

    MathSciNet  MATH  Google Scholar 

  • Hadamard, M.J.: Sur la précession dans le mouvement d’un corps pesant de révolution fixé par un point de son axe. Bull. Sci. Math. 19, 228–230 (1895)

    MATH  Google Scholar 

  • Jovanović, B.: Hamiltonization and integrability of the Chaplygin sphere in \({\mathbb{R} }^n\). J. Nonlinear. Sci. 20, 569–593 (2010). ar**v:0902.4397

    MathSciNet  MATH  Google Scholar 

  • Jovanović, B.: Invariant measures of modified LR and L+R systems. Regul. Chaotic Dyn. 20, 542–552 (2015). ar**v:1508.04913 [math-ph]

    MathSciNet  MATH  Google Scholar 

  • Jovanović, B.: Rolling balls over spheres in \({\mathbb{R} }^n\). Nonlinearity 31, 4006–4031 (2018). ar**v:1804.03697 [math-ph]

    MathSciNet  MATH  Google Scholar 

  • Jovanović, B.: Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization. Theor. Appl. Mech. 46(1), 97–108 (2019)

    MATH  Google Scholar 

  • Koiller, J.: Reduction of some classical non-holonomic systems with symmetry. Arch. Ration. Mech. Anal. 118, 113–148 (1992)

    MathSciNet  MATH  Google Scholar 

  • Kowalzig, N., Neumaier, N., Pflaum, M.J.: Phase space reduction of star products on cotangent bundles. Ann. Henri Poincaré 6, 485–552 (2005). ar**v:math/0403239 [math.SG]

    MathSciNet  MATH  Google Scholar 

  • Kozlov, V.V.: Invariant measures of the Euler–Poincaré equations on Lie algebras. Funkts. Anal. Prilozh. 22, 69–70 (1988) (in Russian). English transl.: Funct. Anal. Appl. 22(1) (1988), 58–59

  • Kozlov, V.V.: On the integration theory of equations of nonholonomic mechanics. Regul. Chaotic Dyn. 7, 161–176 (2002)

    MathSciNet  MATH  Google Scholar 

  • Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytic Mechanics. Kluwer (1987)

  • Magazev, A.A., Shirokov, I.V., Yurevich, Y.A.: Integrable magnetic geodesic flows on Lie groups. TMF 156(2), 189–206 (2008). (in Russian). English. transl. Theoret. and Math. Phys., 156 (2008) 1127–1141

  • Markeev, A.P.: On integrability of problem on rolling of ball with multiply connected cavity filled by ideal liquid. Proc. USSR Acad. Sci., Rigid Body Mech. 21(2), 64–65 (1985)

    Google Scholar 

  • Moskvin, AYu.: Chaplygin’s ball with a gyrostat: singular solutions. Nelineĭn. Din. 5(3), 345–356 (2009)

    Google Scholar 

  • Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Transl. Math. Monogr., vol. 33. American Mathematical Society, Providence (1972)

    Google Scholar 

  • Saksida, P.: Neumann system, spherical pendulum and magnetic fields. J. Phys. A: Math. Gen. 35, 5237–53 (2002)

    MathSciNet  MATH  Google Scholar 

  • Stanchenko, S.: Nonholonomic Chaplygin systems. Prikl. Mat. Mekh. 53, 16–23 (1989). (Russian). English transl.: J. Appl. Math. Mech. 53 (1989), 11–17

  • Taimanov, I.A.: On first integrals of geodesic flows on a two-torus, Modern problems of mechanics, Collected papers, Tr. Mat. Inst. Steklova, vol. 295, pp. 241–260. MAIK Nauka/Interperiodica, Moscow (2016) (Russian). English transl.: Proc. Steklov Inst. Math., 295 (2016) 225–242

  • Veselov, A.P., Veselova, L.E.: Integrable nonholonomic systems on Lie groups. Math. Notes 44(5–6), 810–819 (1988)

    MathSciNet  MATH  Google Scholar 

  • Voronec, P.: On equations of motion of nonholonomic systems. Mat. Sb. 22(4), 659–686 (1901). ((in Russian))

    Google Scholar 

  • Woronetz, P.: Über die Bewegungsgleichungen eines starren Körpers. Math. Ann. 71, 392–403 (1912). Russian transl.: Rus. J. Nonlin. Dyn. 8(2) (2012), 431–441

  • Woronetz, P.: Über die Bewegung eines starren Körpers der ohne Gleitung auf einer beliebigen Fläche rollt. Math. Ann. 70, 410–453 (1911)

    MathSciNet  MATH  Google Scholar 

  • Yaroshchuk, V.A.: New cases of the existence of an integral invariant in a problem on the rolling of a rigid body. Vestn. Mosk. Univer., Ser. I 6, 26–30 (1992). ((in Russian))

    MathSciNet  MATH  Google Scholar 

  • Zenkov, D.: On Hamell’s equations. Theor. Appl. Mech. 43, 191–220 (2016)

    Google Scholar 

  • Zenkov, D.V., Bloch, A.M.: Invariant measures of nonholonomic flows with internal degrees of freedom. Nonlinearity 16, 1793–1807 (2003)

    MathSciNet  MATH  Google Scholar 

  • Zhila, A.I.: Topological types of isoenergetic surfaces of the system “Chaplygin ball with rotor’’. Vestn. Mosk. Univ., Ser. I 3, 52–56 (2020)

    MathSciNet  MATH  Google Scholar 

  • Zhukovskiy, N.E.: About the Bobilev Gyroscopic Ball. Trudy Otdela Fiz, Nauk (1893). ((in Russian))

    Google Scholar 

  • Zubelevich, O.E., Salnikova, T.V.: A note on Lagrange’s top theory. Russ. J. Nonlinear Dyn. 14(1), 139–143 (2018). ([in Russian])

    MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the referees for valuable remarks that significantly helped us to improve the exposition, and in particular for providing us an example which led to Remark 5.2. We thank Viswanath Ramakrishna for reading the manuscript and providing a feedback. This research has been supported by the Project No. 7744592 MEGIC “Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics” of the Science Fund of Serbia, Mathematical Institute of the Serbian Academy of Sciences and Arts and the Ministry for Education, Science, and Technological Development of Serbia, and the Simons Foundation Grant No. 854861.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Božidar Jovanović.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragović, V., Gajić, B. & Jovanović, B. Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres. J Nonlinear Sci 33, 43 (2023). https://doi.org/10.1007/s00332-023-09901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09901-5

Keywords

Mathematics Subject Classification

Navigation