Log in

Far-Field Expansions for Harmonic Maps and the Electrostatics Analogy in Nematic Suspensions

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

For a smooth bounded domain \(G\subset {{\mathbb {R}}}^3\), we consider maps \(n:{\mathbb {R}}^3\setminus G\rightarrow {\mathbb {S}}^2\) minimizing the energy \(E(n)=\int _{{\mathbb {R}}^3{\setminus } G}|\nabla n|^2 +F_s(n_{\lfloor \partial G})\) among \({\mathbb {S}}^2\)-valued map such that \(n(x)\approx n_0\) as \(|x|\rightarrow \infty \). This is a model for a particle G immersed in nematic liquid crystal. The surface energy \(F_s\) describes the anchoring properties of the particle and can be quite general. We prove that such minimizing map n has an asymptotic expansion in powers of 1/r. Further, we show that the leading order 1/r term is uniquely determined by the far-field condition \(n_0\) for almost all \(n_0\in {\mathbb {S}}^2\), by relating it to the gradient of the minimal energy with respect to \(n_0\). We derive various consequences of this relation in physically motivated situations: when the orientation of the particle G is stable relative to a prescribed far-field alignment \(n_0\); and when the particle G has some rotational symmetries. In particular, these corollaries justify some approximations that can be found in the physics literature to describe nematic suspensions via a so-called electrostatics analogy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alama, S., Bronsard, L., Galvão Sousa, B.: Weak anchoring for a two-dimensional liquid crystal. Nonlinear Anal. 119, 74–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Alama, S., Bronsard, L., Golovaty, D., Lamy, X.: Saturn ring defect around a spherical particle immersed in a nematic liquid crystal. Calc. Var. Part. Differ. Equ. 60, 1–50 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Alama, S., Bronsard, L., Lamy, X.: Minimizers of the Landau-de Gennes energy around a spherical colloid particle. Arch. Ration. Mech. Anal. 222(1), 427–450 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Alama, S., Bronsard, L., Lamy, X.: Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime. J. Nonlinear Sci. 28(4), 1443–1465 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Alouges, F., Chambolle, A., Stantejsky, D.: The Saturn ring effect in nematic liquid crystals with external field: effective energy and hysteresis. Arch. Ration. Mech. Anal. 241(3), 1403–1457 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Alouges, F., Chambolle, A., Stantejsky, D.: Convergence to line and surface energies in nematic liquid crystal colloids with external magnetic field. ar**v:2202.10703 (2022)

  • Bella, P., Giunti, A., Otto, F.: Effective multipoles in random media. Comm. Partial Differ. Equ. 45(6), 561–640 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Berlyand, L., Cioranescu, D., Golovaty, D.: Homogenization of a Ginzburg–Landau model for a nematic liquid crystal with inclusions. J. Math. Pures Appl. 84, 97–136 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Berlyand, L., Khruslov, E.: Ginzburg–Landau model of a liquid crystal with random inclusions. J. Math. Phys. 46(9), 095107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Bethuel, F.: On the singular set of stationary harmonic maps. Manuscr. Math. 78(4), 417–443 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Brochard, F., de Gennes, P.G.: Theory of magnetic suspensions in liquid crystals. J. Phys. Fr. 31(7), 691–708 (1970)

    Article  Google Scholar 

  • Calderer, M.C., DeSimone, A., Golovaty, D., Panchenko, A.: An effective model for nematic liquid crystal composites with ferromagnetic inclusions. SIAM J. Appl. Math. 74(2), 237–262 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Canevari, G., Zarnescu, A.: Design of effective bulk potentials for nematic liquid crystals via colloidal homogenisation. Math. Models Methods Appl. Sci. 30(2), 309–342 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Canevari, G., Zarnescu, A.: Polydispersity and surface energy strength in nematic colloids. Math. Eng. 2(2), 290–312 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Dipasquale, F., Millot, V., Pisante, A.: Torus-like solutions for the Landau-de Gennes model. I: The Lyuksyutov regime. Arch. Ration. Mech. Anal. 239(2), 599–678 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Classics in Mathematics, (Springer, Berlin, 2001), Reprint of the 1998 edition

  • Hardt, R., Kinderlehrer, D., Lin, F.-H.: Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105(4), 547–570 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Hardt, R., Kinderlehrer, D., Lin, F.-H.: Stable defects of minimizers of constrained variational principles. Ann. Inst. H. Poincare Anal. Non Linear 5(4), 297–322 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Hardt, R., Kinderlehrer, D., Lin, F.H. (1990) The variety of configurations of static liquid crystals. Var. Methods Proc. Conf. Paris Prog. Nonlinear Differ. Equ. Appl. 4: 115–131

  • Kuksenok, O.V., Ruhwandl, R.W., Shiyanovskii, S.V., Terentjev, E.M.: Director structure around a colloid particle suspended in a nematic liquid crystal. Phys. Rev. E 54, 5198–5203 (1996)

    Article  Google Scholar 

  • Lavrentovich, O.D.: Design of nematic liquid crystals to control microscale dynamics. Liq. Cryst. Rev. 8(2), 59–129 (2020)

    Article  Google Scholar 

  • Lubensky, T.C., Pettey, D., Currier, N., Stark, H.: Topological defects and interactions in nematic emulsions. Phys. Rev. E 57, 610–625 (1998)

    Article  Google Scholar 

  • Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37(2), 349–367 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Muševič, I.: Interactions, topology and photonic properties of liquid crystal colloids and dispersions. Eur. Phys. J. Spec. Top. 227(17), 2455–2485 (2019)

    Article  Google Scholar 

  • Pacard, F., Rivière, T.: Linear and nonlinear aspects of vortices, vol. 39 of Progress in Nonlinear Differential Equations and their Applications, (Birkhäuser Boston, Inc., Boston, MA, 2000), The Ginzburg-Landau model

  • Ramaswamy, S., Nityananda, R., Raghunathan, V.A., Prost, J.: Power-law forces between particles in a nematic. Mol. Cryst. Liq. Cryst. 288(1), 175–180 (1996)

    Article  Google Scholar 

  • Schoen, R.: Analytic aspects of the harmonic map problem. In Seminar on nonlinear partial differential equations, (Springer, New York, 1983) pp. 321–358

  • Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Schoen, R.M.: Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differ. Geom. 18(4), 791–809 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Stein, E. M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. In: Princeton Mathematical Series, (Princeton University Press, Princeton, 1971)

Download references

Acknowledgements

S.A. and L.B. were supported via an NSERC (Canada) Discovery Grant. X.L. received support from ANR project ANR-18-CE40-0023. The work of R.V. was partially supported by a grant from the Simons Foundation (award # 733694) and an AMS-Simons travel award. We wish to thank the anonymous referees for the many substantial improvements they suggested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Bronsard.

Additional information

Communicated by Alain Goriely.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Decay Estimates for Poisson’s Equation

Appendix A: Decay Estimates for Poisson’s Equation

We collect here some folklore decay estimates for Poisson’s equation. For the reader’s convenience, we include a self-contained proof (similar arguments can be found, e.g. in (Pacard and Rivière 2000, § 2.2.3) for Hölder decay at the origin). The elementary arguments we present here do not seem to apply directly for general systems as in Remark 1, in that case one should refer to (Bella et al. 2020, § 5-6).

Lemma A.1

Let \(d\ge 3\), \(\gamma >d-2\), \(\gamma \notin {\mathbb {N}}\), and f a function in \({{\mathbb {R}}}^d\setminus B_1\) satisfying

$$\begin{aligned} |f(x)|\le \frac{1}{r^{\gamma +2}}\qquad \text {for }r=|x|\ge 1. \end{aligned}$$

Then, there exists a function u such that \(\Delta u =f\) in \({{\mathbb {R}}}^d\setminus B_1\) and

$$\begin{aligned} \frac{|u(x)|}{r} +|\nabla u(x)|\lesssim \frac{1}{r^{\gamma +1}}, \end{aligned}$$
(A.1)

where the constant depends only on d and \(\gamma \).

Note that (A.1) does not determine u uniquely, as we may add any faster-decaying harmonic terms to u without changing the equation \(\Delta u=f\), but the proof does determine an explicit right inverse \(f\mapsto u\) to the Laplacian in that decay range.

We will obtain Lemma A.1 as a consequence of an \(L^2\) version of it, that we state now.

Lemma A.2

Let \(d\ge 3\), \(\gamma >d-2\), \(\gamma \notin {\mathbb {N}}\), and f a function in \({{\mathbb {R}}}^d\setminus B_1\) satisfying

$$\begin{aligned} \left( \frac{1}{R^d}\int _{{\vert x\vert }> R} {\vert x\vert }^2 f^2 \, dx \right) ^{\frac{1}{2}}&\le \frac{1}{R^{\gamma +1}}\qquad \forall R\ge 1, \end{aligned}$$
(A.2)

Then, there exists a function u such that \(\Delta u =f\) in \({{\mathbb {R}}}^d\setminus B_1\) and

$$\begin{aligned} \left( \frac{1}{R^d}\int _{{\vert x\vert }\ge R}\frac{{\vert u\vert }^2}{|x|^2}\, dx\right) ^{\frac{1}{2}}&\lesssim \frac{1}{R^{\gamma +1}}\qquad \forall R\ge 1, \end{aligned}$$
(A.3)

where the implicit constant depends only on d and \(\gamma \).

Before proving Lemma A.2, we explain why, together with rescaled elliptic estimates, it implies Lemma A.1.

Proof of Lemma A.1

The assumption on f implies that it satisfies the \(L^2\) decay in the assumption of Lemma A.2, so we obtain u such that \(\Delta u=f\) in \({{\mathbb {R}}}^d\setminus B_1\) and

$$\begin{aligned} \left( \frac{1}{R^d}\int _{{\vert x\vert }\ge R}\frac{{\vert u\vert }^2}{|x|^2}\, dx\right) ^{\frac{1}{2}} \lesssim \frac{1}{R^{\gamma +1}}\qquad \forall R\ge 1, \end{aligned}$$

and the pointwise bound (A.1) in the conclusion of Lemma A.1 follows from rescaled elliptic estimates. Explicitly, consider \({\hat{u}}({\hat{x}})=u(R{\hat{x}})\) which solves \(\Delta {\hat{u}} = {\hat{f}}\), where \({\hat{f}}({\hat{x}}):=R^2 f(R{\hat{x}})\), then from interior elliptic estimates (see, e.g. Gilbarg and Trudinger (2001)) we have

$$\begin{aligned} \sup _{B_3\setminus B_2}\left( |{\hat{u}}| + |\nabla {\hat{u}}| \right)&\lesssim \left( \int _{B_4\setminus B_1}|{\hat{u}}|^2 \right) ^{\frac{1}{2}} + \sup _{B_4\setminus B_1}|{\hat{f}}|\\&\lesssim R \left( \frac{1}{R^d}\int _{|x|\ge R}\frac{|u|^2}{|x|^2} \right) ^{\frac{1}{2}}+\frac{1}{R^{\gamma }}, \end{aligned}$$

from which, scaling back, we infer (A.1).

Next, we prove Lemma A.2. Before doing so, we recall some facts concerning spherical harmonics (that is, homogeneous harmonic polynomials), referring the reader to Stein and Weiss (1971) for details. The Laplace–Beltrami operator on \({\mathbb {S}}^{d-1}\) diagonalizes as

$$\begin{aligned} -\Delta _{{\mathbb {S}}^{d-1}}\Phi _j =\lambda _j \Phi _j,\qquad 0= \lambda _0 \le \lambda _1\le \cdots \end{aligned}$$

The set \(\lbrace \lambda _j\rbrace _{j\in {\mathbb {N}}}\) coincides with \(\lbrace k^2 + k(d-2)\rbrace _{k\in {\mathbb {N}}}\). The eigenfunctions corresponding to \(k^2 + k(d-2)\) span the homogeneous harmonic polynomials of degree k. We choose them normalized in \(L^2(\mathbb S^{d-1})\) so they form an orthonormal Hilbert basis of this space. For a \(W^{2,2}_{loc}\) function \(w:(0,\infty ) \rightarrow \mathbb {R}\), we have

$$\begin{aligned} \Delta (w(r)\Phi _j(\omega )) =({\mathcal {L}}_j w )(r) \Phi _j(\omega ),\qquad {\mathcal {L}}_j =\partial _{rr} +\frac{d-1}{r}\partial _r -\frac{\lambda _j}{r^2}. \end{aligned}$$
(A.4)

The solutions of \({\mathcal {L}}_j w=0\) are linear combinations of \(r^{\gamma _j^+}\) and \(r^{-\gamma _j^-}\), where \(\gamma _j^\pm \ge 0\) are given by

$$\begin{aligned} \gamma _j^+&= \sqrt{\left( \frac{d-2}{2}\right) ^2 +\lambda _j} - \frac{d-2}{2} = k \qquad&\text {for }\lambda _j =k^2+k(d-2),\\ \gamma _j^-&= \sqrt{\left( \frac{d-2}{2}\right) ^2 +\lambda _j} + \frac{d-2}{2} = k +d-2 \qquad&\text {for }\lambda _j =k^2+k(d-2). \end{aligned}$$

The decay rate \(\gamma >d-2\), \(\gamma \notin {\mathbb {N}}\), is fixed, and we denote by \(j_0=j_0(\gamma )\) the integer \(j_0\ge 0\) such that

$$\begin{aligned}&\left\{ j\in {\mathbb {N}} :\gamma _j^- <\gamma \right\} =\lbrace 0,\ldots , j_0\rbrace ,\\&\left\{ j\in {\mathbb {N}} :\gamma _j^- > \gamma \right\} =\lbrace j_0 + 1, j_0 +2,\ldots \rbrace . \end{aligned}$$

Proof of Lemma A.2

We extend f to be defined in \({{\mathbb {R}}}^d\), with the property that

$$\begin{aligned} \left( \int _{{\vert x\vert }\le 1} {\vert x\vert }^2f^2 \, dx\right) ^{\frac{1}{2}}&\le 1 \end{aligned}$$

and will construct a function u such that \(\Delta u=f\) in \({{\mathbb {R}}}^d\setminus \lbrace 0\rbrace \). The function \(f\in L^2({{\mathbb {R}}}^d)\) admits a spherical harmonics expansion

$$\begin{aligned} f =\sum _{j\ge 0} f_j(r)\Phi _j(\omega ), \end{aligned}$$

and the decay assumption (A.2) on f amounts to

$$\begin{aligned} \sum _{j\ge 0}\int _R^\infty f_j(r)^2r^{d+1}\, dr \le R^{d-2\gamma -2}. \end{aligned}$$
(A.5)

We define u as

$$\begin{aligned} u:=\sum _{j\ge 0} u_j(r)\Phi _j(\omega ), \end{aligned}$$

where \(u_j\in W^{2,2}_{loc}(0,\infty )\) satisfy

$$\begin{aligned} {\mathcal {L}}_j u_j =f_j. \end{aligned}$$

To write down an explicit formula for \(u_j\), we rewrite \(\mathcal L_j\), defined in (A.4), as

$$\begin{aligned} {\mathcal {L}}_j u =r^{-d+1+\gamma _j^-}\partial _r [ r^{d-1-2\gamma _j^-} \partial _r ( r^{\gamma _j^-}u) ], \end{aligned}$$

and define

$$\begin{aligned} u_j(r)&= \left\{ \begin{aligned} r^{-\gamma _j^-}\int _r^\infty t^{2\gamma _j^-+1-d}\int _t^\infty s^{d-1-\gamma _j^-} f_j(s)\, ds\, dt&\qquad \text {if }j\in \lbrace 0,\ldots , j_0\rbrace ,\\ r^{-\gamma _j^-}\int _0^r t^{2\gamma _j^-+1-d}\int _t^\infty s^{d-1-\gamma _j^-} f_j(s)\, ds \, dt&\qquad \text {if }j \ge j_0 +1. \end{aligned} \right. \end{aligned}$$
(A.6)

This is well defined because for any \(t >0\) using Cauchy–Schwarz, (A.5) with the choice \(R = t\), and the fact that \(\gamma _j^-\ge d-2>0\), we can estimate the inner integral by

$$\begin{aligned} \int _t^\infty s^{d-1-\gamma _j^-} {\vert f_j(s)\vert }\, ds&\le \left( \int _t^\infty s^{-2-2\gamma _j^-}s^{d-1}ds\right) ^{\frac{1}{2}} \left( \int _t^\infty s^2f_j(s)^2s^{d-1}ds\right) ^{\frac{1}{2}} \nonumber \\&\leqslant \frac{1}{\sqrt{2\gamma _j^- + 2-d}}t^{\tfrac{d}{2} - \gamma _j^- - 1} t^{\tfrac{d}{2} - \gamma - 1} \nonumber \\&= \frac{1}{\sqrt{ 2\gamma _j^- + 2-d}} t^{d - \gamma - \gamma _j^- -2} . \end{aligned}$$
(A.7)

Furthermore, as \(t\mapsto t^{2\gamma _j^- + 1 - d }t^{d-2-\gamma - \gamma _j^-} = t^{\gamma _j^--\gamma -1}\) is integrable near \(\infty \) if \(\gamma _j^-<\gamma \), i.e. if \(j\le j_0\); and is integrable near 0 if \(\gamma _j^->\gamma \), i.e. if \(j\ge j_0 +1\), the functions \(u_j\) in (A.6) are well-defined.

Let \(j\le j_0\) and set

$$\begin{aligned} \alpha {:}{=}\gamma +\gamma _{j_0}^- +1 -d, \end{aligned}$$

so that \(2\gamma +1 - d>\alpha > 2\gamma _j^-+1 - d\). By (A.7) and Cauchy–Schwarz, we have

$$\begin{aligned} |u_j(r)|^2&\le \frac{r^{-2\gamma _j^-}}{2+2\gamma _j^--d}\left( \int _r^\infty t^{\gamma _j^--\frac{d}{2}} \left( \int _t^\infty s^2f_j(s)^2s^{d-1}ds\right) ^{\frac{1}{2}}\, dt \right) ^2 \\&= \frac{r^{-2\gamma _j^-}}{2+2\gamma _j^--d}\left( \int _r^\infty t^{\gamma _j^--\frac{d}{2}-\frac{\alpha }{2}} t^{\frac{\alpha }{2}}\left( \int _t^\infty s^2f_j(s)^2s^{d-1}ds\right) ^{\frac{1}{2}}\, dt \right) ^2 \\&\le \frac{r^{-2\gamma _j^-}}{2+2\gamma _j^--d} \int _r^\infty t^{2\gamma _j^--d-\alpha }\, dt \int _r^{\infty }t^{\alpha } \left( \int _t^\infty s^2f_j(s)^2s^{d-1}ds\right) \, dt \\&= \frac{r^{-d+1-\alpha }}{(2+2\gamma _j^--d)(\alpha -2\gamma _j^- +d - 1)} \int _r^{\infty }t^{\alpha } \left( \int _t^\infty s^2f_j(s)^2s^{d-1}ds\right) \, dt\\&\le \frac{r^{-d+1-\alpha }}{(d-2)(\gamma -\gamma _{j_0}^-)} \int _r^{\infty }t^{\alpha } \left( \int _t^\infty s^2f_j(s)^2s^{d-1}ds\right) \, dt, \end{aligned}$$

where in the last line, we used that \(\gamma _j^- \geqslant d-2\) so that \( 2 + 2\gamma _j^- - d \geqslant d-2,\) and that \(\gamma + \gamma _{j_0}^- - 2\gamma _{j}^- \geqslant \gamma - \gamma _{j_0}^-,\) when \(j \leqslant j_0.\) Summing and using (A.5), we deduce

$$\begin{aligned} \sum _{j=0}^{j_0} \frac{|u_j(r)|^2}{r^2}&\le \frac{r^{-d-1-\alpha }}{(d-2)(\gamma -\gamma _{j_0}^-)} \int _r^{\infty }t^{\alpha } \left( \sum _{j=0}^{j_0}\int _t^\infty s^2f_j(s)^2s^{d-1}ds\right) \, dt \\&\le \frac{r^{-d-1-\alpha }}{(d-2)(\gamma -\gamma _{j_0}^-)} \int _r^{\infty }t^{\alpha +d-2\gamma -2}\, dt \\&=\frac{r^{-2\gamma -2}}{(d-2)(\gamma -\gamma _{j_0}^-)(2\gamma +1 -d -\alpha )}\\&\le \frac{r^{-2\gamma -2}}{(d-2)(\gamma -\gamma _{j_0}^-)^2}. \end{aligned}$$

Similarly, for \(j\ge j_0+1\) we set

$$\begin{aligned} \beta = \gamma +\gamma _{j_0+1}^- +1 -d, \end{aligned}$$

which satisfies \(2\gamma +1 - d<\beta < 2\gamma _j^-+1 - d\). Using (A.7) and Cauchy–Schwarz, we find

$$\begin{aligned} |u_j(r)|^2&\le \frac{r^{-d+1-\beta }}{(d-2)(\gamma _{j_0+1}^- -\gamma )} \int _0^{r}t^{\alpha _j} \left( \int _t^\infty s^2f_j(s)^2s^{d-1}ds\right) \, dt, \end{aligned}$$

so that, we similarly obtain from (A.5) that

$$\begin{aligned} \sum _{j=j_0+1}^{\infty } \frac{|u_j(r)|^2}{r^2}&\le \frac{r^{-2\gamma -2}}{(d-2)(\gamma _{j_0+1}^- -\gamma )^2}. \end{aligned}$$

We conclude that

$$\begin{aligned} \sum _{j=0}^\infty \frac{|u_j(r)|^2}{r^2}&\le \frac{1}{d-2}\left( \frac{1}{(\gamma -\gamma _{j_0}^-)^2}+\frac{1}{(\gamma _{j_0+1}^- -\gamma )^2}\right) r^{-2\gamma -2}. \end{aligned}$$

Therefore, since \(\gamma > d-2\),

$$\begin{aligned} \frac{1}{R^d}\int _{|x|\ge R}\frac{|u|^2}{|x|^2}\, dx&=\frac{1}{R^d}\int _R^\infty \left( \sum _{j=0}^\infty \frac{|u_j(r)|^2}{r^2}\right) \, r^{d-1}\, dr \\&\le \frac{1}{d-2}\left( \frac{1}{(\gamma -\gamma _{j_0}^-)^2}+ \frac{1}{(\gamma _{j_0+1}^- -\gamma )^2}\right) \frac{R^{-2\gamma -2}}{2\gamma +2-d}\\&\le \frac{1}{(d-2)^2}\left( \frac{1}{(\gamma -\gamma _{j_0}^-)^2}+ \frac{1}{(\gamma _{j_0+1}^- -\gamma )^2}\right) R^{-2\gamma -2}, \end{aligned}$$

which proves (A.3).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alama, S., Bronsard, L., Lamy, X. et al. Far-Field Expansions for Harmonic Maps and the Electrostatics Analogy in Nematic Suspensions. J Nonlinear Sci 33, 39 (2023). https://doi.org/10.1007/s00332-023-09895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09895-0

Keywords

Mathematics Subject Classification

Navigation