Log in

MR guidance and thermometry of percutaneous laser disc decompression in open MRI: an initial clinical investigation

  • Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess the feasibility, safety and efficacy of real-time MR guidance and thermometry of percutaneous laser disc decompression (PLDD).

Methods

Twenty-four discs in 22 patients with chronic low-back and radicular pain were treated by PLDD using open 1.0-T magnetic-resonance imaging (MRI). A fluoroscopic proton-density-weighted turbo spin-echo (PDw TSE) sequence was used to position the laser fibre. Non-spoiled gradient-echo (GRE) sequences were employed for real-time thermal monitoring based on proton resonance frequency (PRF). Radicular pain was assessed over 6 months with a numerical rating scale (NRS).

Results

PLDD was technically successful in all cases, with adequate image quality for laser positioning. The PRF-based real-time temperature monitoring was found to be feasible in practice. After 6 months, 21 % reported complete remission of radicular pain, 63 % at least great pain relief and 74 % at least mild relief. We found a significant decrease in the NRS score between the pre-intervention and the 6-month follow-up assessment (P < 0.001). No major complications occurred; the single adverse event recorded, moderate motor impairment, resolved.

Conclusions

Real-time MR guidance and PRF-based thermometry of PLDD in the lumbar spine under open 1.0-T MRI appears feasible, safe and effective and may pave the way to more precise operating procedures.

Key Points

Percutaneous laser disc decompression (PLDD) is increasingly used instead of conventional surgery.

Open 1.0-T MRI with temperature map** seems technically successful in monitoring PLDD.

Pain relief was at leastgreatin 64 % of patients.

No major complications occurred.

Open 1.0-T MRI appears a safe and effective option for patient-tailored PLDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FOV:

Field of view

FSE:

Fast spin echo

GRE:

Gradient echo

NRS:

Numerical rating scale

NSA:

Number of signal averages

PDw:

Proton-density-weighted

PLDD:

Percutaneous laser disc decompression

PRF:

Proton resonance frequency

SD:

Standard deviation

SL:

Slice size

SPAIR:

Spectral adiabatic inversion recovery

TA:

Acquisition time

TSE:

Turbo spin echo

References

  1. Andersson GB (1999) Epidemiological features of chronic low-back pain. Lancet 354:581–585

    Article  PubMed  CAS  Google Scholar 

  2. Ehrlich GE (2003) Low back pain. Bull World Health Organ 81:671–676

    PubMed  Google Scholar 

  3. Battie MC, Videman T (2006) Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg Am 88:3–9

    Article  PubMed  Google Scholar 

  4. Choy DS (2004) Percutaneous laser disc decompression: a 17-year experience. Photomed Laser Surg 22:407–410

    Article  PubMed  Google Scholar 

  5. Manchikanti L, Singh V, Datta S, Cohen SP, Hirsch JA (2009) Comprehensive review of epidemiology, scope, and impact of spinal pain. Pain Physician 12:E35–70

    PubMed  Google Scholar 

  6. Manchikanti L, Boswell MV, Singh V et al (2009) Comprehensive evidence-based guidelines for interventional techniques in the management of chronic spinal pain. Pain Physician 12:699–802

    PubMed  Google Scholar 

  7. Gangi A, Dietemann JL, Ide C, Brunner P, Klinkert A, Warter JM (1996) Percutaneous laser disk decompression under CT and fluoroscopic guidance: indications, technique, and clinical experience. Radiographics 16:89–96

    PubMed  CAS  Google Scholar 

  8. Gronemeyer DH, Buschkamp H, Braun M, Schirp S, Weinsheimer PA, Gevargez A (2003) Image-guided percutaneous laser disk decompression for herniated lumbar disks: a 4-year follow-up in 200 patients. J Clin Laser Med Surg 21:131–138

    Article  PubMed  CAS  Google Scholar 

  9. Menchetti PP, Canero G, Bini W (2011) Percutaneous laser discectomy: experience and long term follow-up. Acta Neurochir Suppl 108:117–121

    Article  PubMed  CAS  Google Scholar 

  10. Tassi GP (2006) Comparison of results of 500 microdiscectomies and 500 percutaneous laser disc decompression procedures for lumbar disc herniation. Photomed Laser Surg 24:694–697

    Article  PubMed  Google Scholar 

  11. Zhao XL, Fu ZJ, Xu YG, Zhao XJ, Song WG, Zheng H (2012) Treatment of lumbar intervertebral disc herniation using C-arm fluoroscopy guided target percutaneous laser disc decompression. Photomed Laser Surg 30:92–95

    Article  PubMed  Google Scholar 

  12. Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL (2009) Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol 192:W161–167

    Article  PubMed  Google Scholar 

  13. Ishiwata Y, Takada H, Gondo G, Osano S, Hashimoto T, Yamamoto I (2007) Magnetic resonance-guided percutaneous laser disk decompression for lumbar disk herniation–relationship between clinical results and location of needle tip. Surg Neurol 68:159–163

    Article  PubMed  Google Scholar 

  14. Sequeiros RB, Ojala RO, Klemola R, Vaara TJ, Jyrkinen L, Tervonen OA (2002) MRI-guided periradicular nerve root infiltration therapy in low-field (0.23-T) MRI system using optical instrument tracking. Eur Radiol 12:1331–1337

    Article  PubMed  Google Scholar 

  15. Steiner P, Zweifel K, Botnar R et al (1998) MR guidance of laser disc decompression: preliminary in vivo experience. Eur Radiol 8:592–597

    Article  PubMed  CAS  Google Scholar 

  16. Streitparth F, Hartwig T, Schnackenburg B et al (2011) MR-guided discography using an open 1 Tesla MRI system. Eur Radiol 21:1043–1049

    Article  PubMed  Google Scholar 

  17. Streitparth F, Walter T, Wonneberger U et al (2010) Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol 20:395–403

    Article  PubMed  CAS  Google Scholar 

  18. Wonneberger U, Schnackenburg B, Wlodarczyk W et al (2010) Evaluation of thermometric monitoring for intradiscal laser ablation in an open 1.0 T MR scanner. Int J Hyperth 26:295–304

    Article  Google Scholar 

  19. Wonneberger U, Schnackenburg B, Wlodarczyk W et al (2010) Intradiscal temperature monitoring using double gradient-echo pulse sequences at 1.0T. J Magn Reson Imaging 31:1499–1503

    Article  PubMed  Google Scholar 

  20. Sachs BL, Vanharanta H, Spivey MA et al (1987) Dallas discogram description. A new classification of CT/discography in low-back disorders. Spine (Phila Pa 1976) 12:287–294

    Article  CAS  Google Scholar 

  21. Wonneberger U, Schnackenburg B, Streitparth F (2010) Evaluation of MR-compatible needles and interactive sequences for muskoloskeletal interventions in an open high-field MRI. Cardiovasc Intervent Radiol 33:346–51

    Article  PubMed  Google Scholar 

  22. Hellinger J (2004) Complications of non-endoscopic percutaneous laser disc decompression and nucleotomy with the neodymium: YAG laser 1064 nm. Photomed Laser Surg 22:418–422

    Article  PubMed  CAS  Google Scholar 

  23. Choy DS (2001) Response of extruded intervertebral herniated discs to percutaneous laser disc decompression. J Clin Laser Med Surg 19:15

    Article  PubMed  CAS  Google Scholar 

  24. Bosacco SJ, Bosacco DN, Berman AT, Cordover A, Levenberg RJ, Stellabotte J (1996) Functional results of percutaneous laser discectomy. Am J Orthop 25:825

    PubMed  CAS  Google Scholar 

  25. Black W, Fejos AS, Choy DS (2004) Percutaneous laser disc decompression in the treatment of discogenic back pain. Photomed Laser Surg 22:431

    Article  PubMed  Google Scholar 

  26. Gibson JN, Waddell G (2007) Surgical interventions for lumbar disc prolapse: updated Cochrane Review. Spine 32:1735–1747

    Article  PubMed  Google Scholar 

  27. Goupille P, Mulleman D, Mammou S, Griffoul I, Valat JP (2007) Percutaneous laser disc decompression for the treatment of lumbar disc herniation: a review. Semin Arthritis Rheum 37:20–30

    Article  PubMed  Google Scholar 

  28. Singh V, Manchikanti L, Benyamin RM, Helm S, Hirsch JA (2009) Percutaneous lumbar laser disc decompression: a systematic review of current evidence. Pain Physician 12:573–588

    PubMed  Google Scholar 

  29. Brouwer PA, Peul WC, Brand R et al (2009) Effectiveness of percutaneous laser disc decompression versus conventional open discectomy in the treatment of lumbar disc herniation; design of a prospective randomized controlled trial. BMC Musculoskelet Disord 10:49

    Article  PubMed  Google Scholar 

  30. Maurer MH, Schreiter N, de Bucourt M et al (2013) Cost comparison of nerve root infiltration of the lumbar spine under MRI and CT guidance. Eur Radiol. doi:10.1007/s00330-012-2757-y

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Johannes Hellinger (München) for valuable and instructive discussion. This work was supported in part by grants from the Technologiestiftung BerlinZukunftsfonds Berlin (TSB) and the EU's European Fund for Regional Development (grant no. 10132816/10134231).

Fourteen of the patients in this study have been included in an already published diagnostic imaging study [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Streitparth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streitparth, F., Hartwig, T., Walter, T. et al. MR guidance and thermometry of percutaneous laser disc decompression in open MRI: an initial clinical investigation. Eur Radiol 23, 2739–2746 (2013). https://doi.org/10.1007/s00330-013-2872-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2872-4

Keywords

Navigation