Log in

Creation, characterization and utilization of Cryptococcus neoformans mutants sensitive to micafungin

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We constructed deletion mutants of Cryptococcus neoformans var neoformans (serotype D) genes encoding late ergosterol biosynthetic pathway enzymes and found that the mutations enhanced susceptibility to various drugs including micafungin, one of the echinocandins, to which wild-type Cryptococcus strains show no susceptibility. Furthermore, through isolation of a mutant resistant to micafungin from a micafungin-sensitive erg mutant and genetic analysis of it, we found that the responsible mutation occurred in the hotspot 2 of FKS1 encoding β-1, 3-glucan synthase, indicating that micafungin inhibited the growth of the erg mutant via inhibiting Fks1 activity. Addition of ergosterol to the culture of the erg mutants recovered the resistance to micafungin, suggesting that the presence of ergosterol in membrane inhibits the accession of micafungin to its target. We found that a loss of one of genes encoding subunits of v-ATPase, VPH1, made Cryptococcus cells sensitive to micafungin. Our observation that the erg2 vph1 double mutant was more sensitive to micafungin than either single mutant suggests that these two genes act differently in becoming resistant to micafungin. The erg mutants allowed us to study the physiological significance of β-1, 3-glucan synthesis in C. neoformans; the inhibition of β-1, 3-glucan synthesis induced cell death and changes in cellular morphology. By observing the erg mutant cells recovering from the growth inhibition imposed by micafungin, we recognized β-1, 3-glucan synthesis would suppress filamentous growth in C. neoformans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe F, Hiraki T (2009) Mechanistic role of ergosterol in membrane integrity and cycloheximide resistance in Saccharomyces cerevsiae. Biohim Biophys Acta 1788:743–752

    Article  CAS  Google Scholar 

  • Abruzzo GK, Flattery AM, Gill CJ, Kong L, Smith JG, Krupa D, Pikounis VB, Kropp H, Bartizal K (1995) Evaluation of water-soluble pneumocandin analogs L-733560, L-705589, and L-731373 with mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis. Antimicrob Agents Chemother 39:1077–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adler A, Park Y-D, Larsen P, Nagarajan V, Wollenberg K, Qiu J, Myers TG, Williamson P (2011) A novel specificity protein 1 (SP1)-like gene regulating protein kinase C-1 (Pkc1)-dependent cell wall integrity and virulence factors in Cryptococcus neoformans. J Biol Chem 286:20977–20990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartizal K, Gill CJ, Abruzzo GK, Flattery AM, Kong L, Scott PM, Smith JG, Leighton CE, Bouffard A, Dropinski JF, Balkovec J (1997) In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872). Antimicrob Agents Chemother 41:2326–2332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beseli A, Amnuaykanjanasin A, Herrero S, Thomas E, Daub ME (2015) Membrane transporters in self resistance of Cercospora nicotianae to the photoactivated toxin cercosporin. Curr Genet 61:601–620

    Article  CAS  PubMed  Google Scholar 

  • Bizerra FC, Melo ASA, Katchburian E, Freymuller E, Straus AH, Takahashi HK, Colombo AL (2011) Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida Species. Antimicrob Agents Chemother 55:302–310

    Article  CAS  PubMed  Google Scholar 

  • Bowman JC, Hicks PS, Kurtz MB, Rosen H, Schmatz DM, Liberator PA, Douglas CM (2002) The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicro Agents Chemother 46:3001–3012

    Article  CAS  Google Scholar 

  • Cannon RD, Lam** E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol 22:291–321

    Article  CAS  Google Scholar 

  • Cao M, Fu Y, Pan J (2009) Chlamydomonas (Chlorophyceae) colony PCR. Protoplasma 235:107–110

    Article  CAS  PubMed  Google Scholar 

  • Clark-Walker GD, Linnane AW (1966) In vivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochem Biophys Res Commun 25:8–13

    Article  CAS  PubMed  Google Scholar 

  • Dawson K, Toone WM, Jones N, Wilkinson RM (2008) Loss of regulators of vacuolar ATPase and ceramide synthesis results in multidrug sensitivity in Schizosaccharomyces pombe Eukary. Cell 7:926–937

    CAS  Google Scholar 

  • Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J (2000) Synergistic antifungal activities of bafilomycin A1, fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob Agents Chemother 44:739–746

    Article  PubMed  PubMed Central  Google Scholar 

  • Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Dudiuk C, Gamarra S, Jimenez-Ortigosa C, Leonardelli F, Macedo D, Perlin DS, Garcia-Effron G (2015) Quick detection of FKS1 mutations responsible for clinical echinocandin resistance in Candida albicans. J Clin Microbiol 53:2037–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emter R, Heese-Peck A, Kralli A (2002) ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Lett 521:57–61

    Article  CAS  PubMed  Google Scholar 

  • Feldmesser M, Kress Y, Mednick A, Casadevall A (2000) The effect of echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J Infect Dis 182:1791–1795

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Hettler ER, Wickes BL (2006) Split marker transformation increases homologous integration frequency in Cryptococcus neoformans. Fungal Genet Biol 43:200–212

    Article  CAS  PubMed  Google Scholar 

  • Fujimura H (1996) The immunosuppressant leflunomide blocks the yeast Saccharomyces cerevisiae cell cycle at the G1 phase. FEMS Microbiol 143:273–277

    Article  CAS  Google Scholar 

  • Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daun G, Riezman H (2002) Multiple functions of sterols in yeast endocytosis. Mol Biol Cell 13:2664–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Liao G, Baker GM, Wang Y, Lau R, Paderu P, Perlin DS, Xue C (2016) Lipid flippase subunit Cdc50 mediates drug resistance and virulence in Cryptococcus neoformans. mBio 7:e00478-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Ianiri G, Boyce KJ, Idnurm A (2016) Isolation of conditional mutations in genes essential for viability of Cryptococcus neoformans. Curr Genet 63:519–530

    Article  PubMed  Google Scholar 

  • Iwase M, Okada S, Oguchi T, Toh-e A (2004) Forchlorfenuron, a phenylurea cytokinin, disturbs septin organization in Saccharomyces cerevisiae. Genes Genet Syst 79:199–206

    Article  CAS  PubMed  Google Scholar 

  • Jia C, Zhang K, Yu Q, Zhang B, **ao C, Dong Y, Chen Y, Zhang B, **ng L, Li M (2015) Tfp1 is required for iron homeostasis, fluconazole resistance and N-acetylglucosamine utilization in Candida albicans. Biochim Biophys Acta 1853:2731–2744

    Article  CAS  PubMed  Google Scholar 

  • Johnson ME, Edlind TD (2012) Topological and mutational analysis of Saccharomyces cerevisiae Fks1. Eukary Cell 11:952–960

    Article  CAS  Google Scholar 

  • Kurtz MB, Heath IB, Marrinan J, Dreikorn S, Ohishi J, Douglas C (1994) Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-β-D-glucan synthase. Antimicrob Agents Chemother 38:1480–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon-Chung KJ, Edman JC, Wickes BL (1992) Genetic association of mating type and virulence in Cryptococcus neoformans. Infect Immun 60:602–605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat shock proteins and treharose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol 18:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HM, Virtudazo EV, Toh-e A, Yamaguchi M, Kawamoto S, Shimizu K (2010) Non-homologous end joining pathway of the human pathogen Cryptococcus neoformans influences homologous integration efficiency but not virulence. Mycoscience 51:272–280

    Article  Google Scholar 

  • Luna-Tapia A, Peters BM, Eberle KE, Foster TP, Marrero L, Noverr MC, Fidel PL Jr, Palmer GE (2015) ERG2 and ERG24 are required for normal vacuolar physiology as well as Candida albicans pathogenicity in a murine model of disseminated but not vaginal candidiasis. Eukary Cell 14:1006–1016

    Article  CAS  Google Scholar 

  • Maligie M, Selitrennikoff CP (2005) Cryptococcus neoformans resistance to echinocandins: (1, 3)β-glucan synthase activity is sensitive to echinocandins. Antimicrob Agents and Chemother 49:2851–2856

    Article  CAS  Google Scholar 

  • Niimi K, Maki K, Ikeda F, Holmes AR, Lam** E, Niimi M, Monk BC, Cannon RD (2006) Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob Agents Chemother 50:1148–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitiss J, Wang JC (1988) DNA topoisomerase targeting anti-tumor drugs can be studied in yeast. Proc Natl Acad Sci USA 85:7501–7505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panepinto JC, Komperda KW, Hachan M, Shin S, Liu X, Williamson PR (2007) Binding of serum mannan binding lectin to a cell integrity-defective Cryptococcus neoformans ccr4D mutant. Infect Immun 75:4769–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posteraro B, Sanguinetti M, Sanglard D, LaSorda M, Boccia S, Romano L, Morace G, Fadda G (2003) Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene, CnAFR1, involved in the resistance to fluconazole. Mol Microbiol 47:357–371

    Article  CAS  PubMed  Google Scholar 

  • Schuetzer-Muehlbauer M, Willinger B, Krapf G, Enzinger S, Presterl E, Kuchler K (2003) The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Mol Microbiol 48:225–235

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wang W, Wang K, Yu X, Liu J, Zhou F, **e B, Li S (2013) Sterol C-22 desaturase ERG5 mediates the sensitivity to antifungal azoles in Neurospora crassa and Fusarium verticillioides. Front Microbiol 4:1–8

    Article  Google Scholar 

  • Thompson J, Douglass CM, Li W, Jue CK, Pramonic B, Yuan X, Rude TH, Toffaletti DL, Perfect JR, Kurtz M (1999) A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. J Bacteriol 181:444–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toffaletti DL, Rude TH, Johnson SA, Durack DT, Perfect JR (1993) Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175:1405–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh-e A, Ohkusu M, Shimizu K, Kawamoto S (2015) Positional cloning in Cryptococcus neoformans and its application for identification and cloning of the gene encoding methylenetrahydrofolate reductase. Fungal Genet Biol 76:70–77

    Article  CAS  PubMed  Google Scholar 

  • Uesono Y, Toh-e A, Kikuchi Y, Terashima I (2011) Structural analysis of compounds with actions similar to local anesthetics and antipsychotic phenothiazines in yeast. Yeast 28:391–404

    Article  CAS  PubMed  Google Scholar 

  • White CW, Jacobson ES (1985) Occurrence of diploid strains of Cryptococcus neoformans. J Bacteriol 161:1231–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M, Okada H, Namiki Y (2009) Smart specimen preparation for freeze-substitution and serial ultrathin sectioning of yeast cells. J Electron Microsc 58:261–266

    Article  CAS  Google Scholar 

  • Yamaguchi M, Namiki Y, Okada H, Mori Y, Furukawa H, Wang J, Ohkusu M, Kawamoto S (2011) Structome of Saccharomyces cerevisiae determined by freeze-substitution and serial ultrathin sectioning electron microscopy. J Electron Microsc 60:321–335

    Article  Google Scholar 

  • Yan Z, Hull CM, Sun S, Heitman J, Xu J (2007) The mating type specific heterodimer genes SXI1a and SXI2a control uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr Genet 51:187–195

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Rao R (2010) Beyond ergosterol. Virulence 1:6551–6554

    Google Scholar 

Download references

Acknowledgements

This study was supported by the university fund from Chiba-University. Micafungin was provided by Astellas Pharma Inc., Japan. There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Toh-e.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 76 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh-e, A., Ohkusu, M., Shimizu, K. et al. Creation, characterization and utilization of Cryptococcus neoformans mutants sensitive to micafungin. Curr Genet 63, 1093–1104 (2017). https://doi.org/10.1007/s00294-017-0713-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0713-8

Keywords

Navigation