Log in

Putative orotate transporter of Cryptococcus neoformans, Oat1, is a member of the NCS1/PRT transporter super family and its loss causes attenuation of virulence

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

It is well known that 5-fluoroorotic acid (5-FOA)-resistant mutants isolated from wild-type Cryptococcus neoformans are exclusively either ura3 or ura5 mutants. Unexpectedly, many of the 5-FOA-resistant mutants isolated in our selective regime were Ura+. We identified CNM00460 as the gene responsible for these mutations. Cnm00460 belongs to the nucleobase cation symporter 1/purine-related transporter (NCS1/PRT) super family of fungal transporters, representative members of which are uracil transporter, uridine transporter and allantoin transporter of Saccharomyces cerevisiae. Since the CNM00460 gene turned out to be involved in utilization of orotic acid, most probably as transporter, we designated this gene Orotic Acid Transporter 1 (OAT1). This is the first report of orotic acid transporter in this family. C. neoformans has four members of the NCS1/PRT family, including Cnm00460, Cnm02550, Cnj00690, and Cnn02280. Since the cnm02550∆ strain showed resistance to 5-fluorouridine, we concluded that CNM02550 encodes uridine permease and designated it URidine Permease 1 (URP1). We found that oat1 mutants were sensitive to 5-FOA in the medium containing proline as nitrogen source. A mutation in the GAT1 gene, a positive transcriptional regulator of genes under the control of nitrogen metabolite repression, in the genetic background of oat1 conferred the phenotype of weak resistance to 5-FOA even in the medium using proline as nitrogen source. Thus, we proposed the existence of another orotic acid utilization system (tentatively designated OAT2) whose expression is under the control of nitrogen metabolite repression at least in part. We found that the OAT1 gene is necessary for full pathogenic activity of C. neoformans var. neoformans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing environment: lessons from fungi. Nat Rev Microbiol 5:57–69

    Article  CAS  PubMed  Google Scholar 

  • Baker KE, Ditullio KP, Neuhard J, Kelin RA (1996) Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA. J Bacteriol 178:7099–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch J-C, Pfeiffer P, Exinger F (1998) Dihydroorotate (dho ut) and orotate (oro ut) utilizer mutants in yeast: identification of the dhout mutation and allelism of the DHO and URE2 genes. Life Sci 321:267–274

    CAS  Google Scholar 

  • Boeke JD, Lacroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Article  CAS  PubMed  Google Scholar 

  • Cao M, Fu Y, Pan J (2009) Chlamydomonas (Chlorophyceae) colony PCR. Protoplasma 235:107–110

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Gao N, Wang Q, Ren Y, Wang K, Zhu T (2015) BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Curr Genet 61:545–553

    Article  CAS  PubMed  Google Scholar 

  • Davidson RC, Cruz MC, Sia RA, Allen B, Alspaugh JA, Heitman J (2000) Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol 29:38–48

    Article  CAS  PubMed  Google Scholar 

  • Defoor E, Kryger M-B, Martinussen J (2007) The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology 253:3645–3659

    Article  Google Scholar 

  • Drillien R, Lacroute F (1972) Ureidosuccinic acid uptake in yeast and some aspects of its regulation. J Bacteriol 109:203–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamari Z, Amellis S, Drevet C, Apostolaki A, Vagvolgyl C, Diallinas G, Scazzocchio C (2009) Convergent evolution and orphan genes of the Fur4p-like family and characterization of a general nucleoside transporters in Aspergillus nidulans. Mol Microbiol 73:43–57

    Article  CAS  PubMed  Google Scholar 

  • Idnurm A, Reedy JL, Nussbaum JC, Heitman J (2004) Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot Cell 3:420–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** K, Zhang Y, Fang W, Luo Z, Zhou Y, Pei Y (2010) Carboxylate transporter gene JEN1 from the entomopathogenic fungus Beauveria bassiana is involved in conidiation and virulence. Appl Environ Microbiol 76:254–263

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann CS, Merz WG (1982) Two rapid pigmentation tests for identification of Cryptococcus neoformans. J Clin Microbiol 10:339–441

    Google Scholar 

  • Kmetzsch L, Staats CC, Simon E, Fonseca FL, Oliveira DL, Joffe LS, Rodriguesw J, Lourenco RF, Gomes SL, Nimrichter L, Rodrigues ML, Schrank A, Vainstein MH (2011) The GATA-type transcription activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans. Fungal Genet Biol 48:192–199

    Article  CAS  PubMed  Google Scholar 

  • Ko N, Nishihama R, Pringle JR (2008) Control of 5-FOA and 5-FU resistance by Saccharomyces cerevisiae YJL055W. Yeast 25:155–160

    Article  CAS  PubMed  Google Scholar 

  • Krooth RS, Hsiao WL, Potvin BW (1979) Resistance to 5-fluoroorotic acid and pyrimidine auxotrophy: a new bidirectional selective system for mammalian cells. Somatic Cell Genet 5:551–569

    Article  CAS  PubMed  Google Scholar 

  • Krypotou E, Evangelidis T, Bobonis J, Pittis AA, Gabaldon T, Scazzocchio C, Mikros E, Diallinas G (2015) Origin, diversification and substrate specificity in the family of NCS1/FUR transporters. Mol Microbiol 96:927–950

    Article  CAS  PubMed  Google Scholar 

  • Kwon-Chung KJ, Edman JC, Wickes BL (1992a) Genetic association of mating type and virulence in Cryptococcus neoformans. Infect Immun 60:602–605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon-Chung KJ, Varma A, Edman JC, Bennett JE (1992b) Selection of ura5 and ura3 mutants from the two varieties of Cryptococcus neoformans on 5-fluooroorotic acid medium. J Med Vet Mycol 30:61–69

    Article  CAS  PubMed  Google Scholar 

  • Lee IR, Chow EWL, Morrow CA, Djordjevic JT, Fraser JA (2011) Nitrogen metabolite repression of metabolism and virulence in human fungal pathogen Cryptococcus neoformans. Genetics 188:309–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HM, Virtudazo EV, Toh-e A, Yamaguchi M, Kawamoto S, Shimizu K (2010) Non-homologous end joining pathway of the human pathogen Cryptococcus neoformans influences homologous integration efficiency but not virulence. Mycoscience 51:272–280

    Article  Google Scholar 

  • Lin X, Nielsen K, Patel S, Heitman J (2008) Impact of mating type, serotype, and ploidy on virulence of Cryptococcus neoformans. Infect Immun 76:2923–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y-G, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and map** of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  • Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM (2008) Systematic genetic analysis of virulence in human fungal pathogen Cryptococcus neoformans. Cell 135:174–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T-B, Wang Y, Baker GM, Fahmy H, Jiang L, Xue C (2013) The glucose sensor-like protein Hxs1 is a high-affinity glucose transporter and required for virulence in Cryptococcus neoformans. PLoS One 8:e64239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loftus BJ, Fung E, Roncaglis P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, Fraser JA, Allen JE, Bosdet IE, Brent MR, Chiu R, Doering TL, Donlin MJ, D’Souza CA, Fox DS, Grinberg V, Fu J, Fukushima M, Haas BJ, Huang JC, Janbon G, Jones SJ, Koo HL, Krzywinski MI, Kwon-Chung JK, Lengeler KB, Maiti R, Marra MA, Marra RE, Mathewson CA, Michell TG, Pertea M, Riggs FR, Salzberg SL, Schein JE, Shvartsbeyn A, Shin H, Shumway M, Specht CA, Suh BB, Tenny A, Utterback TR, Wickes BL, Wortman JR, Wye NH, Kronstad JW, Lodge JK, Heitman J, Davis RD, Fraser CM, Hyman RW (2005) The genome of basidiomycetous yeast Cryptococcus neoformans. Science 307:1321–1324

    Article  PubMed  PubMed Central  Google Scholar 

  • McClelland CM, Chang YC, Kwon-Chung KJ (2005) High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens. Fungal Genet Biol 42:904–913

    Article  CAS  PubMed  Google Scholar 

  • Mitchell TG, Perfect JR (1995) Cryptococcosis in the era of AIDS—a hundred years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8:515–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pantazopoulou A, Diallinas G (2007) Fungal nucleobase transporters. FEMS Microbiol Rev 31:657–675

    Article  CAS  PubMed  Google Scholar 

  • Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

    Article  CAS  PubMed  Google Scholar 

  • Sikorski RS, Boeke JD (1991) In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol 194:302–318

    Article  CAS  PubMed  Google Scholar 

  • Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR (1993) Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175:1405–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh-e A, Ohkusu M, Shimizu K, Kawamoto S (2015) Positional cloning in Cryptococcus neoformans and its application for identification and cloning of the gene encoding methylenetrahydrofolate reductase. Fungal Genet Biol 76:70–77

    Article  CAS  PubMed  Google Scholar 

  • Walton FJ, Idnurm A, Heitman J (2005) Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57:1381–1396

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu T-B, Delmas G, Park S, Perlin D, Xue C (2011) Two inositol transporters and their role in Cryptococcal virulence. Eukaryot Cell 10:618–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterman SR, Park Y-D, Raja M, Qiu J, Hammoud DA, O’Halloran TV, Williamson PR (2012) Role of CTR4 in the virulence of Cryptococcus neoformans. MBio 3:1–11

    Article  Google Scholar 

  • White CW, Jacobson ES (1985) Occurrence of diploid strains of Cryptococcus neoformans. J Bacteriol 161:1231–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong S, Wolfe KH (2005) Birth of metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37:77–82

    Article  Google Scholar 

  • Yan Z, Hull CM, Sun S, Heitman J, Xu J (2007) The mating type specific heterodimer genes SXI1a and SXI2α control uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr Genet 51:187–195

    Article  CAS  PubMed  Google Scholar 

  • Yurgel SN, Khan ML (2005) Sinorhizobium meliloti dctA mutants with partial ability to transport dicarboxylic acids. J Bacteriol 187:61–1172

    Article  Google Scholar 

  • Yurgel S, Mortimer MW, Rogers KN, Khan ML (2000) New substrates for the dicarboxylate transport system of Sinorhizobium melilote. J Bacteriol 182:4216–4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza O (2004) Casadevall A (2004) Experimental modulation of capsule size in Cryptococcus neoformans. Biol Proced Online 6:10–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Grant of Chiba University and a Grant in Aid from the Ministry of Education, Culture, Sports, Science and Technology to AT (23659219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Toh-e.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh-e, A., Ohkusu, M., Shimizu, K. et al. Putative orotate transporter of Cryptococcus neoformans, Oat1, is a member of the NCS1/PRT transporter super family and its loss causes attenuation of virulence. Curr Genet 63, 697–707 (2017). https://doi.org/10.1007/s00294-016-0672-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0672-5

Keywords

Navigation