Log in

Structure determination of hyperbranched polyester BOLTORN H40 by 1D- and 2D-NMR spectroscopy

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hyperbranched polyester BOLTORN H40 is a perspective core molecule for synthesis of biodegradable block copolymers for drug delivery systems. NMR spectroscopy is the key method to study molecular structure of BOLTORN H40; however, interpretation of the 1H-NMR spectrum is still ambiguous. To determine the polyester structure precisely, a combination of 1D and 2D-NMR methods (1H, 13C, TOCSY, HSQC, HMBC) was suggested. These methods allow detecting signals from hydroxyl groups, whose correlations are crucial for identification of different types of units. The proportions of the terminal, linear, and dendritic monomeric units in BOLTORN H40 polyester were estimated to be 31, 53, and 16%, respectively. The degree of branching of the polyester is 0.47. According to this value, BOLTORN H40 belongs to a family of hyperbranched polyesters capable of forming micellar nanocontainers. These properties are critical for further precise characterization of block copolymers for various drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghosh B, Biswas S (2021) Polymeric micelles in cancer therapy: state of the art. J Control Release 332:127–147

    Article  CAS  PubMed  Google Scholar 

  2. Davoodi P, Lee LY, Xu QX, Sunil V, Sun YJ, Soh S, Wang CH (2018) Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 132:104–138

    Article  CAS  PubMed  Google Scholar 

  3. Hadar J, Skidmore S, Garner J, Park H, Park K, Wang Y, Qin B, Jiang XH, Kozak D (2020) Method matters: Development of characterization techniques for branched and glucose-poly (lactide-co-glycolide) polymersJ. J Control Release 320:484–494

    Article  CAS  PubMed  Google Scholar 

  4. Michalski A, Brzezinsky M, Lapienes G, Biela T (2019) Star-shaped and branched polylactides: synthesis, characterization, and properties. Prog Polym Sci 89:159–212

    Article  CAS  Google Scholar 

  5. Gomzyak VI, Sedush NG, Puchkov AA, Polyakov DK, Chvalun SN (2021) Linear and branched lactide polymers for targeted drug delivery systems. Polym Sci Ser B 63:257–271

    Article  CAS  Google Scholar 

  6. Kearney AS (1996) Prodrugs and targeted drug delivery. Adv Drug Deliv Rev 19:225–239

    Article  CAS  Google Scholar 

  7. Solaro R, Chiellini F, Battisti A (2010) Targeted delivery of protein drugs by nanocarriers. Mater (Basel) 3:1928–1980

    Article  CAS  Google Scholar 

  8. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F (2017) Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 190:64–83

    Article  CAS  PubMed  Google Scholar 

  9. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  CAS  PubMed  Google Scholar 

  10. Kumari P, Ghosh B, Biswas S (2016) Nanocarriers for cancer-targeted drug delivery. J Drug Target 24:179–191

    Article  CAS  PubMed  Google Scholar 

  11. Gohy JF (2005) Block copolymer micelles. Adv Polym Sci 190:65–136

    Article  CAS  Google Scholar 

  12. Avramović N, Mandić B, Savić-Radojević A, Simić T (2020) Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics 12:1–17

    Article  Google Scholar 

  13. Martí Coma-Cros E, Lancelot A, San Anselmo M, Neves Borgheti-Cardoso L, Valle-Delgado JJ, Serrano JL, Fernàndez-Busquets X, Sierra T (2019) Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery Biomater. Sci. 7:1661–1674

    Google Scholar 

  14. Wei X, Chen X, Ying M, Lu W (2014) Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B 4:193–201

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of genexol-pm, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716

    Article  CAS  PubMed  Google Scholar 

  16. Wolf FK, Fischer AM, Frey H (2010) Poly (glycolide) multi-arm star polymers: Improved solubility via limited arm length. Beilstein J Org Chem 6:1–9

    Article  Google Scholar 

  17. Kwon Y, Faust R (2004) Synthesis of polyisobutylene-based block copolymers with precisely controlled architecture by living cationic polymerization. Adv Polym Sci 167:107–135

    Article  CAS  Google Scholar 

  18. Malmström E, Johansson M, Hult A (1995) Hyperbranched aliphatic polyesters. Macromolecules 28:1698–1703

    Article  Google Scholar 

  19. Pitsikalis M, Pispas S, Mays JW, Hadjichristidis N (1998) Nonlinear block copolymer architectures. Adv Polym Sci 135:1–137

    Article  CAS  Google Scholar 

  20. Holzgrabe U, Wawer I, Diehl B (1999) NMR spectroscopy in drug development and analysis. Wiley, London

    Book  Google Scholar 

  21. Žagar E, Žigon M (2002) Characterization of a commercial hyperbranched aliphatic polyester based on 2, 2-bis (methylol) propionic acid. Macromolecules 35:9913–9925

    Article  Google Scholar 

  22. Žagar E, Žigon M, Podzimek S, Majda Z, Ema Z (2006) Characterization of commercial aliphatic hyperbranched polyesters. Polymer (Guildf) 47:166–175

    Article  Google Scholar 

  23. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn® H40, poly(l-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomater 30:3009–3019

    Article  CAS  Google Scholar 

  24. Du F, Hönzke S, Neumann F, Keilitz J, Chen W, Ma N, Hedtrich S, Haag R (2016) Development of biodegradable hyperbranched core-multishell nanocarriers for efficient topical drug delivery. J Control Release 242:42–49

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Dai Y, Dai G (2020) Advances in amphiphilic hyperbranched copolymers with an aliphatic hyperbranched 2,2-bis(methylol)propionic acid-based polyester core. Polym Chem 11:964–973

    Article  CAS  Google Scholar 

  26. Liu Y, Fan Y, Liu XY, Jiang SZ, Yuan Y, Chen Y, Cheng F, Jiang SC (2012) Amphiphilic hyperbranched copolymers bearing a hyperbranched core and dendritic shell: synthesis, characterization and guest encapsulation performance. Soft Matter 8:8361–8369

    Article  CAS  Google Scholar 

  27. Ramaswamy M, Zhang X, Burt HM, Wasan KM (1997) Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers. J Pharm Sci 86:460–464

    Article  CAS  PubMed  Google Scholar 

  28. Gajbhiva BV (2020) Biodegradable dendritic Boltorn TM nanoconstructs: a promising avenue for cancer theranostics. Int J Pharm Elsevier B V 594:120–177

    Google Scholar 

  29. Arcy RD, Burke J, Tirelli N (2016) Branched polyesters: preparative strategies and applications. Adv Drug Deliv Rev Elsevier BV 107:60–81

    Article  Google Scholar 

  30. Xue Y, Sun J, **ong S, Liu T, **n X, Xu G (2018) Synthesis, self-assembly and drug solubilization of hyperbranched block polyethers. J Mol Liq 249:16–23

    Article  CAS  Google Scholar 

  31. Jeon IY, Noh HJ, Baek JB (2018) Hyperbranched macromolecules: From synthesis to applications. Mol 23:1–21

    Article  Google Scholar 

  32. Hawker CJ, Lee R, Frécnet JMJ (1991) One-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc 113:4583–4588

    Article  CAS  Google Scholar 

  33. Koslowski T, Jurjiu A, Blumen A (2006) Models of irregular hyperbranched polymers: topological disorder and mechanical response. Macromol Theory Simul 15:538–545

    Article  CAS  Google Scholar 

  34. Chikh L, Tessier M, Fradet A (2007) NMR and MALDI-TOF MS study of side reactions in hyperbranched polyesters based on 2,2-bis(hydroxymethyl)propanoic acid. Polymer (Guildf) 48:1884–1892

    Article  CAS  Google Scholar 

  35. Karataeva FK, Rezepova MV, Kutyreva MP, Kutyrev GA, Ulakhovich NA (2009) NMR (1D and 2D) Study of structure and association character of hyperbranched polyether polyol BOLTORN H20–OH (in Russian). Proc Kazan Univ 151:37–45

    Google Scholar 

  36. Braun S, Kalinowski H-O, Berger S (1996) 100 and more basic nmr experiments. Wiley, London

    Google Scholar 

  37. Breitmaier E (2002) Structure elucidation by nmr in organic chemistry a practical guide. Wiley, Chichester

    Book  Google Scholar 

  38. Rule GS, Hitchens TK (2006) Fundamentals of protein NMR spectroscopy. Springer, Cham

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Elena Bazanova and the Language Training and Testing Centre for help in the preparation of the English version of the article. 1H and 13C NMR experiments were supported by President’s grant for young scientists (project MK-70.2021.1.3). Two-dimensional correlation NMR experiments were supported by the Russian Science Foundation (project 18-73-10079-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya Shpotya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig.

Fig. 7
figure 7

COSY NMR spectrum of BOLTORN H40 in DMSO-d6

7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpotya, V., Perepukhov, A., Maksimychev, A. et al. Structure determination of hyperbranched polyester BOLTORN H40 by 1D- and 2D-NMR spectroscopy. Polym. Bull. 80, 4523–4534 (2023). https://doi.org/10.1007/s00289-022-04274-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04274-3

Keywords

Navigation