Log in

Final epidemic size of a two-community SIR model with asymmetric coupling

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Communities are commonly not isolated but interact asymmetrically with each other, allowing the propagation of infectious diseases within the same community and between different communities. To reveal the impact of asymmetrical interactions and contact heterogeneity on disease transmission, we formulate a two-community SIR epidemic model, in which each community has its contact structure while communication between communities occurs through temporary commuters. We derive an explicit formula for the basic reproduction number \({\mathcal {R}}_0\), give an implicit equation for the final epidemic size z, and analyze the relationship between them. Unlike the typical positive correlation between \({\mathcal {R}}_0\) and z in the classic SIR model, we find a negatively correlated relationship between counterparts of our model deviating from homogeneous populations. Moreover, we investigate the impact of asymmetric coupling mechanisms on \({\mathcal {R}}_0\). The results suggest that, in scenarios with restricted movement of susceptible individuals within a community, \({\mathcal {R}}_0\) does not follow a simple monotonous relationship, indicating that an unbending decrease in the movement of susceptible individuals may increase \({\mathcal {R}}_0\). We further demonstrate that network contacts within communities have a greater effect on \({\mathcal {R}}_0\) than casual contacts between communities. Finally, we develop an epidemic model without restriction on the movement of susceptible individuals, and the numerical simulations suggest that the increase in human flow between communities leads to a larger \({\mathcal {R}}_0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availibility

This manuscript has no associated data.

References

  • Amini H, Minca A (2022) Epidemic spreading and equilibrium social distancing in heterogeneous networks. Dyn Games Appl 1–30

  • Anderson RM, May RM (1992) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Ball F, Neal P (2002) A general model for stochastic SIR epidemics with two levels of mixing. Math Biosci 180(1–2):73–102

    MathSciNet  Google Scholar 

  • Barthélemy M, Barrat A, Pastor-Satorras R et al (2005) Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J Theor Biol 235(2):275–288

    MathSciNet  Google Scholar 

  • Bidari S, Chen X, Peters D et al (2016) Solvability of implicit final size equations for SIR epidemic models. Math Biosci 282:181–190

    MathSciNet  Google Scholar 

  • Cadoni M (2020) How to reduce epidemic peaks kee** under control the time-span of the epidemic. Chaos Solitons Fractals 138:109940

    MathSciNet  Google Scholar 

  • Cui J, Wu Y, Guo S (2022) Effect of non-homogeneous mixing and asymptomatic individuals on final epidemic size and basic reproduction number in a meta-population model. Bull Math Biol 84(3):1–22

    MathSciNet  Google Scholar 

  • Diekmann O (1978) Thresholds and travelling waves for the geographical spread of infection. J Math Biol 6(2):109–130

    MathSciNet  Google Scholar 

  • Diekmann O, De Jong MCM, Metz JAJ (1998) A deterministic epidemic model taking account of repeated contacts between the same individuals. J Appl Probab 35(2):448–462

    MathSciNet  Google Scholar 

  • El Sayed NM, Gomatos PJ, Beck-Sagué CM et al (2000) Epidemic transmission of human immunodeficiency virus in renal dialysis centers in Egypt. J Infect Dis 181(1):91–97

    Google Scholar 

  • Ferrari’s solution. https://en.wikipedia.org/wiki/Quartic_function#Ferraris_solution

  • Fitzgibbon WE, Morgan JJ, Webb GF et al (2019) Spatial models of vector-host epidemics with directed movement of vectors over long distances. Math Biosci 312:77–87

    MathSciNet  Google Scholar 

  • Fitzgibbon WE, Morgan JJ, Webb GF et al (2020) Analysis of a reaction-diffusion epidemic model with asymptomatic transmission. J Biol Syst 28(03):561–587

    MathSciNet  Google Scholar 

  • Graham M, House T (2014) Dynamics of stochastic epidemics on heterogeneous networks. J Math Biol 68(7):1583–1605

    MathSciNet  Google Scholar 

  • Großmann G, Backenköhler M, Wolf V (2021) Heterogeneity matters: contact structure and individual variation shape epidemic dynamics. PLoS ONE 16(7):e0250050

    Google Scholar 

  • Hales S, Weinstein P, Souares Y et al (1999) El Niño and the dynamics of vectorborne disease transmission. Environ Health Perspect 107(2):99–102

    Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    MathSciNet  Google Scholar 

  • ** Z, Sun G, Zhu H (2014) Epidemic models for complex networks with demographics. Math Biosci Eng 11(6):1295

    MathSciNet  Google Scholar 

  • Kamp C (2010) Untangling the interplay between epidemic spread and transmission network dynamics. PLoS Comput Biol 6(11):e1000984

    MathSciNet  Google Scholar 

  • Kiss IZ, Green DM, Kao RR (2006) The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math Biosci 203(1):124–136

    MathSciNet  Google Scholar 

  • Koch D, Illner R, Ma J (2013) Edge removal in random contact networks and the basic reproduction number. J Math Biol 67(2):217–238

    MathSciNet  Google Scholar 

  • Krasnosel’skii MA (1964) Positive solutions of operator equations. Nordhoff, Groningen

    Google Scholar 

  • Lajmanovich A, Yorke JA (1976) A deterministic model for gonorrhea in a nonhomogeneous population. Math Biosci 28(3–4):221–236

    MathSciNet  Google Scholar 

  • Li CH, Tsai CC, Yang SY (2014) Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks. Commun Nonlinear Sci Numer Simul 19(4):1042–1054

    MathSciNet  Google Scholar 

  • Lieberthal B, Soliman A, Wang S et al (2023) Epidemic spread on patch networks with community structure. Math Biosci 359:108996

    MathSciNet  Google Scholar 

  • Magal P, Seydi O, Webb GF (2016) Final size of an epidemic for a two-group SIR model. SIAM J Appl Math 76(5):2042–2059

    MathSciNet  Google Scholar 

  • Magal P, Seydi O, Webb GF (2018) Final size of a multi-group SIR epidemic model: irreducible and non-irreducible modes of transmission. Math Biosci 301:59–67

    MathSciNet  Google Scholar 

  • Meng X, Cai Z, Si S et al (2021) Analysis of epidemic vaccination strategies on heterogeneous networks: based on SEIRV model and evolutionary game. Appl Math Comput 403:126172

    MathSciNet  Google Scholar 

  • Miller JC, Slim AC, Volz EM (2012) Edge-based compartmental modelling for infectious disease spread. J R Soc Interface 9(70):890–906

    Google Scholar 

  • Moreno Y, Pastor-Satorras R, Vespignani A (2002) Epidemic outbreaks in complex heterogeneous networks. Eur Phys J B Condens Matter Complex Syst 26(4):521–529

    Google Scholar 

  • Mossong J, Hens N, Jit M et al (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5(3):e74

    Google Scholar 

  • Muroya Y, Kuniya T (2014) Further stability analysis for a multi-group SIRS epidemic model with varying total population size. Appl Math Lett 38:73–78

    MathSciNet  Google Scholar 

  • Muroya Y, Enatsu Y, Kuniya T (2013) Global stability for a multi-group SIRS epidemic model with varying population sizes. Nonlinear Anal Real World Appl 14(3):1693–1704

    MathSciNet  Google Scholar 

  • Olinky R, Stone L (2004) Unexpected epidemic thresholds in heterogeneous networks: the role of disease transmission. Phys Rev E 70(3):030902

    Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63(6):066117

    Google Scholar 

  • Rass L, Radcliffe J (2003) Spatial deterministic epidemics. American Mathematical Society

  • Thieme HR (1977) A model for the spatial spread of an epidemic. J Math Biol 4:337–351

    MathSciNet  Google Scholar 

  • Thieme HR (1979) On a class of Hammerstein integral equations. Manuscr Math 29:49–84

    MathSciNet  Google Scholar 

  • Thieme HR (2003) Mathematics in population biology. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D, Kareiva P (1998) Spatial ecology. Princeton University Press, Princeton

    Google Scholar 

  • Turkyilmazoglu M (2021) Explicit formulae for the peak time of an epidemic from the SIR model. Phys D 422:132902

    MathSciNet  Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

    MathSciNet  Google Scholar 

  • Velazquez O, Stetler HC, Avila C et al (1990) Epidemic transmission of enterically transmitted non-A, non-B hepatitis in Mexico, 1986–1987. JAMA 263(24):3281–3285

    Google Scholar 

  • Wallis J, Lee DR (1999) Primate conservation: the prevention of disease transmission. Int J Primatol 20(6):803–826

    Google Scholar 

  • Wang L, Dai G (2008) Global stability of virus spreading in complex heterogeneous networks. SIAM J Appl Math 68(5):1495–1502

    MathSciNet  Google Scholar 

  • Wang Y, ** Z, Yang Z et al (2012) Global analysis of an SIS model with an infective vector on complex networks. Nonlinear Anal Real World Appl 13(2):543–557

    MathSciNet  Google Scholar 

  • Wang Y, Cao J, Li X et al (2018) Edge-based epidemic dynamics with multiple routes of transmission on random networks. Nonlinear Dyn 91(1):403–420

    MathSciNet  Google Scholar 

  • Wang Y, Wei Z, Cao J (2020) Epidemic dynamics of influenza-like diseases spreading in complex networks. Nonlinear Dyn 101(3):1801–1820

    Google Scholar 

  • Yorke JA (1967) Invariance for ordinary differential equations. Math Syst Theory 1(4):353–372

    MathSciNet  Google Scholar 

  • Zhang J, ** Z (2012) Epidemic spreading on complex networks with community structure. Appl Math Comput 219(6):2829–2838

    MathSciNet  Google Scholar 

  • Zhu G, Fu X, Chen G (2012) Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks. Appl Math Model 36(12):5808–5817

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Yi Wang’s research is partially supported by the National Natural Science Foundation of China under Grants 12171443 and 11801532, and the Fundamental Research Funds for the Central Universities under Grant G1323523061. Guiquan Sun’s research is partially supported by the National Natural Science Foundation of China under Grants 12022113 and 12271314. Hao Wang’s research is partially supported by the Natural Sciences and Engineering Research Council of Canada under Discovery Grant RGPIN-2020-03911 and Accelerator Supplement Award RGPAS-2020-00090. The authors thank the handling editor and the two anonymous referees for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We can obtain the roots of the quaternion equation (3.10) using the Ferrari’s solution (see, https://en.wikipedia.org/wiki/Quartic_function#Ferraris_solution for the exact solution procedure):

$$\begin{aligned} \begin{aligned}&\lambda _1=\frac{\rho _{lA}+\rho _{lB}}{4} +\frac{\sqrt{\mu +2y}+\sqrt{-(3\mu +2y+\frac{2\nu }{\sqrt{\mu +2y}})}}{2},\\&\lambda _2=\frac{\rho _{lA}+\rho _{lB}}{4} +\frac{\sqrt{\mu +2y}-\sqrt{-(3\mu +2y+\frac{2\nu }{\sqrt{\mu +2y}})}}{2},\\&\lambda _3=\frac{\rho _{lA}+\rho _{lB}}{4} -\frac{\sqrt{\mu +2y}+\sqrt{-(3\mu +2y-\frac{2\nu }{\sqrt{\mu +2y}})}}{2},\\&\lambda _4=\frac{\rho _{lA}+\rho _{lB}}{4} -\frac{\sqrt{\mu +2y}-\sqrt{-(3\mu +2y-\frac{2\nu }{\sqrt{\mu +2y}})}}{2}, \end{aligned} \end{aligned}$$

where

$$\begin{aligned}&\mu =\frac{1}{8}(-3\rho _{lA}^2+2\rho _{lA}\rho _{lB}-3\rho _{lB}^2-8\rho _{gA}\rho _{gB}),\\&\nu =-\frac{\rho _{lA}\rho _{gA}\rho _{gB}(2\langle k\rangle _A^2-\langle k^2\rangle _A)}{2\langle k^2\rangle _A}-\frac{\rho _{lA}^3-\rho _{lA}^2\rho _{lB}-\rho _{lA}\rho _{lB}^2+\rho _{lB}^3}{8}\\&\quad \; \ \ +\frac{\rho _{lB}\rho _{gA}\rho _{gB} (\langle k^2\rangle _B-2\langle k\rangle _B^2)}{2\langle k^2\rangle _B},\\&\upsilon =-\frac{\rho _{lA}^2\rho _{gA}\rho _{gB}}{16\langle k^2\rangle _A}\big (4\langle k\rangle _A^2-3\langle k^2\rangle _A\big ) -\frac{\rho _{lA}\rho _{lB}\rho _{gA}\rho _{gB}}{8\langle k^2\rangle _A\langle k^2\rangle _B}\big (5\langle k^2\rangle _A\langle k^2\rangle _B -6\langle k\rangle _A^2\langle k^2\rangle _B\\&\quad \; \ \ -6\langle k^2\rangle _A\langle k\rangle _B^2+8\langle k\rangle _A^2\langle k\rangle _B^2\big ) +\frac{1}{256}\big (4\rho _{lA}^3\rho _{lB}+4\rho _{lA} \rho _{lB}^3-3\rho _{lA}^4+14\rho _{lA}^2\rho _{lB}^2-3\rho _{lB}^4\big )\\&\quad \; \ \ +\frac{\rho _{lB}^2\rho _{gA}\rho _{gB}}{16\langle k^2\rangle _B} \big (3\langle k^2\rangle _B-4\langle k\rangle _B^2\big ),\\&y=-\frac{5}{6}\mu -\frac{P}{3U}+U,~~P=-\frac{\mu ^2}{12}-\upsilon ,~~Q =-\frac{\mu ^3}{108}+\frac{\mu \upsilon }{3}-\frac{\nu ^2}{8},\\&U=\root 3 \of {-\frac{Q}{2}\pm \sqrt{\frac{Q^2}{4}+\frac{P^3}{27}}} \text {(take the value with the larger mode)}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Wang, Y., Gao, S. et al. Final epidemic size of a two-community SIR model with asymmetric coupling. J. Math. Biol. 88, 51 (2024). https://doi.org/10.1007/s00285-024-02073-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-024-02073-0

Keywords

Mathematics Subject Classification

Navigation