Log in

In vitro Antibacterial Activity and Secondary Metabolite Profiling of Endolichenic Fungi Isolated from Genus Parmotrema

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The endolichenic fungi are an unexplored group of organisms for the production of bioactive secondary metabolites. The aim of the present study is to determine the antibacterial potential of endolichenic fungi isolated from genus Parmotrema. The study is continuation of our previous work, wherein a total of 73 endolichenic fungi were isolated from the lichenized fungi, which resulted in 47 species under 23 genera. All the isolated endolichenic fungi were screened for preliminary antibacterial activity. Five endolichenic fungi—Daldinia eschscholtzii, Nemania diffusa, Preussia sp., Trichoderma sp. and Xylaria feejeensis, were selected for further antibacterial activity by disc diffusion method. The zone of inhibition ranged from 14.3 ± 0.1 to 23.2 ± 0.1. The chemical composition of the selected endolichenic fungi was analysed through GC–MS, which yielded a total of 108 compounds from all the selected five endolichenic fungi. Diethyl phthalate, 1-hexadecanol, dibutyl phthalate, n-tetracosanol-1, 1-nonadecene, pyrrol[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methyl) and tetratetracontane were found to be common compounds among one or the other endolichenic fungi, which possibly were responsible for antibacterial activity. GC–MS data were further analysed through Principal Component Analysis which showed D. eschscholtzii to be with unique pattern of expression of metabolites. Compound confirmation test revealed coumaric acid to be responsible for antibacterial activity in D. eschscholtzii. So, the study proves that endolichenic fungi that inhabit lichenized fungal thalli could be a source of potential antibacterial compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baker RE, Mahmud AS, Miller I, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem AJ, Wagner CE, Wang LF, Wesolowski A, Metcalf CJE (2022) Infectious disease in an era of global change. Nat Rev Microbiol 20:193–205. https://doi.org/10.1038/s41579-021-00639-z

    Article  CAS  PubMed  Google Scholar 

  2. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20:200–216. https://doi.org/10.1038/s41573-020-00114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ (2019) A review of the microbial production of bioactive natural products and biologics. Front Microbiol 10:1404. https://doi.org/10.3389/fmicb.2019.01404

    Article  PubMed  PubMed Central  Google Scholar 

  4. Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 385–406

    Google Scholar 

  5. Seaward MRD (1988) Contribution of lichens to ecosystems. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton, pp 107–129

    Google Scholar 

  6. Biosca EG, Flores R, Santander RD, Diez-Gil JL, Barreno E (2016) Innovative approaches using lichen enriched media to improve isolation and culturability of lichen associated bacteria. PLoS ONE 11(8):e0160328. https://doi.org/10.1371/journal.pone.0160328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muggia L, Fleischhacker A, Kopun T, Grube M (2016) Extremotolerant fungi from alpine rock lichens and their phylogenetic relationships. Fungal Divers 76:119–142. https://doi.org/10.1007/s13225-015-0343-8

    Article  PubMed  Google Scholar 

  8. Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297. https://doi.org/10.1093/sysbio/syp001

    Article  PubMed  Google Scholar 

  9. Paranagama PA, Wijeratne EMK, Burns AM, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AAL (2007) Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod 70(11):1700–1705. https://doi.org/10.1021/np070466w

    Article  CAS  PubMed  Google Scholar 

  10. He JW, Chen GD, Gao H, Yang F, Li XX, Peng T, Guo LD, Yao XS (2012) Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia 83(6):1087–1091. https://doi.org/10.1016/j.fitote.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  11. Yang F, Chen GD, Gao H, Li XX, Wu Y, Guo LD, Yao XS (2012) Two new naphthalene derivatives from an endolichenic fungal strain Scopulariopsis sp. J Asian Nat Prod Res 14(11):1059–1063. https://doi.org/10.1080/10286020.2012.705278

    Article  CAS  PubMed  Google Scholar 

  12. Yang BJ, Chen GD, Li YJ, Hu D, Guo LD, **ong P, Gao H (2016) A new xanthone glycoside from the endolichenic fungus Sporormiella irregularis. Molecules 21(6):764. https://doi.org/10.3390/molecules21060764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li XB, Zhou YH, Zhu RX, Chang WQ, Yuan HQ, Gao W, Zhang LL, Zhao ZT, Lou HX (2015) Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem Biodivers 12:575–592. https://doi.org/10.1002/cbdv.201400146

    Article  CAS  PubMed  Google Scholar 

  14. Samanthi KAU, Wickramarachchi S, Wijeratne EMK, Paranagama PA (2015) Two new bioactive polyketides from Curvularia trifolii, an endolichenic fungus isolated from Usnea sp., in Sri Lanka. J Natl Sci Found Sri Lanka 43(3):217–224. https://doi.org/10.4038/jnsfsr.v43i3.7950

    Article  CAS  Google Scholar 

  15. Kellogg JJ, Raja HA (2016) Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phyto Rev 16(2):271–293. https://doi.org/10.1007/s11101-016-9473-1

    Article  CAS  Google Scholar 

  16. Singh BN, Upreti DK, Gupta VK, Dai XF, Jiang Y (2017) Endolichenic fungi: a hidden reservoir of next generation biopharmaceuticals. Trends Biotech 35(9):808–813. https://doi.org/10.1016/j.tibtech.2017.03.003

    Article  CAS  Google Scholar 

  17. Nash TH (2008) Lichen Biology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC et al (2020) Outline of fungi and fungus like-taxa. Mycosphere 11(1):1060–1456

    Article  Google Scholar 

  19. Mishra GK, Upreti DK (2017) The lichen genus Parmotrema A. Massal. (Lecanorales, Ascomycota) from India with addition distributional records. Crypto Biodiver Assess 2(2):18–40

    Article  Google Scholar 

  20. Esslinger TL (2010) A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada. North Dakota State University: http://www.ndsu.edu/pubweb/~esslinge/chcklst/chcklst7.htm (First Posted 1 December 1997, Most Recent Version (#16) 18 June 2010), Fargo, North Dakota

  21. Thangjam NP, Kumar A, Laldingliani T, Upreti DK (2022) New distributional records of lichens for the State of Mizoram. Indo-Burma Region India Trends Sci 19(4):2573

    Google Scholar 

  22. Kalidoss R, Merlin J, Charumathy M, Surekha S, Arun Prasath K, Mariraj M, Shenbagam M, Rajaprabu N, Ponmurugan P (2019) Lichen collections from Nilgiris of Western Ghats in Tamil Nadu and screening for antimicrobial, antioxidant efficacy of some selected species. Pramana Res J 9(6)

  23. Wei CJ (1991) Enum. Lich. China: 177

  24. Gogoi R, Devi D, Nayaka S, Yasmin F (2022) A checklist of lichens of Assam. India Asian J Cons Bio 11(1):49–65

    Google Scholar 

  25. Louwhoff SHJJ (2009) Lichens of Great Britain and Ireland, British Lichen Society, pp 661–663

  26. Yahr R, Allen J, Lymbey C, Bungartz F, Molina RB, Dal-Forno M, Howe N et al (2021) Parmotrema crinitum-The IUCN Red List of Threatened Species

  27. Goni R, Raina AKP, Magotra R, Sharma N (2015) Lichen flora of Jammu and Kashmir State, India: an updated checklist. Trop Plant Res 2(1):64–71

    Google Scholar 

  28. Wolseley PA, Aguirre-Hudson B, McCarthy PM (2002) Catalogue of the lichens of Thailand. Bullet Nat History Museum London 32(1):13–59

    Google Scholar 

  29. Aptroot A (2024) Botanic garden and botanical museum berlin (BGBM). Willdenowia 46(3):349–365

    Article  Google Scholar 

  30. Balaji P, Hariharan GN (2013) Diversity of Macrolichens in Bolampatti II Forest Range (Siruvani Hills), Western Ghats, Tamil Nadu, India. ISRN Biodiversity. Article ID 124020

  31. Jha BN, Shrestha M, Pandey DP, Bhattarai T, Bhattarai HD, Paudel B (2017) Investigation of antioxidant, antimicrobial and toxicity activities of lichens from high altitude regions of Nepal. BMC Complement Altern Med 17:282

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sati SC, Joshi S (2011) Antibacterial activity of the Himalayan Lichen Parmotrema nilgherrense extracts. British Micro Res J 1(2):26–32

    Article  Google Scholar 

  33. Buaruang K, Boonpragob K, Mongkolsuk P, Sangvichien E, Vongshewarat K, Polyiam W, Lumbsch T (2017) A new checklist of lichenized fungi occurring in Thailand. MycoKeys 23:1–91

    Article  Google Scholar 

  34. Cranfield RJ (2004) Lichen census of Western Australia. Nuytsia 15(2):193–220

    Article  Google Scholar 

  35. Chongbang BT, Keller C, Nobis M, Scheidegger C, Baniya CB (2018) From natural forest to cultivated land: Lichen species diversity along land-use gradients in Kanchenjunga. Eastern Nepal 10(1):46–60

    Google Scholar 

  36. Jayalal U, Divakar PK, Joshi S, Oh S, Koh YJ, Hur J (2013) The Lichen Genus Parmotrema in South Korea. Mycobiology 4(1):25–36

    Article  Google Scholar 

  37. Saha S, Pal A, Pau S (2021) A review on pharmacological, anti-oxidant activities and phytochemical constituents of a novel Lichen Parmotrema species. J Biologically Act Prod Nat 11(3):190–203

    CAS  Google Scholar 

  38. Kant R, Kharkwal K, Sinha BK, Ambrish K, Bisht K, Sinha GP (2019) Three new records for lichen biota of Himachal Pradesh. India Indian J For 42(2):195–198

    Google Scholar 

  39. Mark RD, David S, Richardson HS, Brodo IM, Harris RC (2017) Checklist of Lichen-forming, Lichenicolous and allied fungi of eagle hill and its vicinity maine. Northeast Natural 24(3):349–379

    Article  Google Scholar 

  40. Jayaprakasha GK, Rao LJ (2000) Phenolic constituents from the Lichen Parmotrema stuppeum (Nyl.) hale and their antioxidant activity. Z Naturforsch C J Biosci 55(11–12):1018–1022

    Article  CAS  PubMed  Google Scholar 

  41. Singh KP, Sinha GP (2010) Indian Lichens: An Annotated Checklist. Publisher: Director Botanical Survey of India ISBN: 978-81-8177-036-3

  42. Paguirigan JAG (2020) A checklist of lichens known from the Philippines. Curr Res Environ Appl Myco 10(1):319–376

    Article  Google Scholar 

  43. Raja PS, Prathapana A, Sebastiana J, Antonya AK, Riyaa MP, Rania MRP, Bijub H, Priyaa S, Raghua KG, Prashith K (2016) Antifungal activity of Parmotrema tinctorum (Delise ex Nyl.) Hale and Parmotrema cristiferum (Taylor) Hale against seed mycoflora—a comparative study. Sci Tech Arts Res J 5(1):80–83

    Google Scholar 

  44. Chakarwarti J, Nayaka S, Srivastava S (2023) Diversity of endolichenic fungi within lichen genus Parmotrema from India. Turkish J of Bot 47(4):291–306. https://doi.org/10.55730/1300-008X.2767

    Article  Google Scholar 

  45. Divakar PK, Upreti DK (2005) Parmelioid lichens of India (A revisionary study). In: Singh Mahendra Pal Singh (ed) Dehra Dun, India, pp 448 https://doi.org/10.1017/S0024282906219054

  46. Suryanarayanan TS, Thirunavukkarasu N, Hariharan GN, Balaji P (2005) Occurrence of non-obligate inside lichen thalli. Sydowia 57:120–130

    Google Scholar 

  47. Padhi S, Das D, Panja S, Tayung K (2016) Molecular characterization and antimicrobial activity of an endolichenic fungus, Aspergillus sp. isolated from Parmelia caperata of similipal biosphere reserve, India. Interdiscip Sci 9(2):237–246. https://doi.org/10.1007/s12539-016-0146-y

    Article  CAS  PubMed  Google Scholar 

  48. Singh P, Singh J, Rajput RS, Vaishnav A, Ray S, Singh RK, Singh HB (2019) Exploration of multitrait antagonistic microbes against Fusarium oxysporum f.sp. lycopersici. J Appl Nat Sci 11(2):503–510. https://doi.org/10.31018/jans.v11i2.2111

    Article  CAS  Google Scholar 

  49. Kumar P, Nayaka S, Verma T, Niranjan A, Upreti DK (2024) Comparative analysis of antimicrobial, antioxidant activities and phytochemicals of Himalayan lichens. Biomass Convers Biorefnery. https://doi.org/10.1007/s13399-024-05315-9

    Article  Google Scholar 

  50. Hormazabal E, Piontelli E (2009) Endophytic fungi from Chilean native gymnosperms: antimicrobial activity against human and phytopathogenic fungi. World J of Micro & Biotech 25(5):813–819. https://doi.org/10.1007/s11274-008-9953-6

    Article  CAS  Google Scholar 

  51. Sahin F, Karaman I, Güllüce M, Oğütçü H, Sengül M, Adigüzel A, Oztürk S, Kotan R (2003) Evaluation of antimicrobial activities of Satureja hortensis L. J Ethnopharmacol 87:61–65. https://doi.org/10.1016/s0378-8741(03)00110-7

    Article  CAS  PubMed  Google Scholar 

  52. Bist V, Niranjan A, Ranjan M, Lehri A, Seem K, Srivastava S (2020) Silicon-solubilizing media and its implication for characterization of bacteria to mitigate biotic stress. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00028

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang K, Ma B, Feng T, Chen D, Yao L, Lu J, Sun M (2021) Quantitative analysis of volatile compounds of four Chinese traditional liquors by SPME-GC-MS and determination of total phenolic contents and antioxidant activities. Open Chem 19:518–529. https://doi.org/10.1515/chem-2021-0039

    Article  CAS  Google Scholar 

  54. Dubey D, Patnaik R, Ghosh G, Padhy RN (2014) In-vitro antibacterial activity, gas chromatography-mass spectrometry analysis of Woodfordia fruticosa Kurz. leaf extract and host toxicity testing with in-vitro cultured lymphocytes from human umbilical cord blood. Osong Public Health Res Perspect 5(5):298–312. https://doi.org/10.1016/j.phrp.2014.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mamedov IG, Mamedov YV (2021) Biological activity of novel penta substituted cyclohexanol against some microorganisms. Indian J Chem 60B:283–286

    CAS  Google Scholar 

  56. Zhao J, Jiang J, Tang X, Peng L, Li X, Zhao G, Zhong L (2018) Chemical composition, antimicrobial and antioxidant activities of the flower volatile oils of Fagopyrum esculentum, Fagopyrum Tataricum and Fagopyrum Cymosum. Molecules 23(1):182. https://doi.org/10.3390/molecules23010182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beulah GG, Soris PT, Mohan VR (2018) GC-MS determination of bioactive compounds of Dendrophthoe falcata (L.F) Ettingsh: an epiphytic plant. Intern J Health Sci Res 8(11):261

    Google Scholar 

  58. Damtew B, Habte T, Zemede A, Beyene P (2016) Bioactive chemical constituents from the leaf of Oreosyce africana Hook.f (Cucurbitaceae) with mosquitocidal activities against adult Anopheles arabiensis, the principal Malaria vector in Ethiopia. J Fertil Pestic 7:1. https://doi.org/10.4172/jbfbp.1000159

    Article  Google Scholar 

  59. Togashi N, Shiraishi A, Nishizaka M, Matsuoka K, Endo K, Hamashima H, Inoue Y (2007) Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules 12:139–148. https://doi.org/10.3390/12020139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Figueiredo CR, Matsuo AL, Massaoka MH, Girola N, Azevedo RA, Rabaça AN et al (2014) Antitumor activity of Kielmeyera Coriacea leaf constituents in experimental melanoma, tested in-vitro and in-vivo in syngeneic mice. Adv Pharm Bullet 4:429–436. https://doi.org/10.5681/apb.2014.063

    Article  Google Scholar 

  61. Vambe M, Aremu AO, Chukwujekwu JC, Gruz J, Luterová A, Finnie J, Staden JV (2020) Antibacterial, mutagenic properties and chemical characterisation of sugar bush (Protea cara Meisn.): a South African Native Shrub Species. Plants 9(10):1331. https://doi.org/10.3390/plants9101331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lakshmi M, Nair BR (2017) GC-MS analysis of the chloroform extract of bark of Terminalia travancorensis Wight & Arn (combretaceae). Intern J Pharma Sci 8(2):794–798. https://doi.org/10.13040/IJPSR.0975-8232

    Article  CAS  Google Scholar 

  63. Amudha P, Jayalakshmi M, Pushpabharathi N, Vanitha V (2018) Identification of bioactive components in Enhalus Acoroides seagrass extract by gas chromatography-mass spectrometry. Asian J Pharma Clinical Res 11(10):313–317. https://doi.org/10.22159/ajpcr.2018.v11i10.25577

    Article  CAS  Google Scholar 

  64. El-fayoumy EA, Shanab SMM, Gaballa HS, Tantawy MA, Shalaby EA (2021) Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions. BMC Complem Med Ther 21:51. https://doi.org/10.1186/s12906-020-03194-x

    Article  CAS  Google Scholar 

  65. Matthew O, James A, Akogwu I, Fabunmi T, Idoko O, Ebun B, Mohammed Z, Dorathy O (2021) Evaluation of in vitro antioxidant, phytochemical and GC-MS analysis of aqueous extract of Solanum Dasyphyllum fruits. J Med Bio Sci Res 7(3):10–14. https://doi.org/10.36630/jmbsr_21008

    Article  Google Scholar 

  66. Zhang S-B, Qin Y-L, Li S-F, Lv Y-Y, Zhai H-C, Hu Y-S, Cai J-P (2021) Antifungal mechanism of 1-Nonanol against Aspergillus flavus growth revealed by metabolomic analysis. Appl Micro and Biotech 105(20):7871–7888. https://doi.org/10.1007/s00253-021-11581-8

    Article  CAS  Google Scholar 

  67. Aldulaimi AKO, Ian AH, Radhi AH, Aowda SA, Abdul Azziz SSS et al (2020) GC-MS analysis and biological activities of Iraq Zahdi Date Palm Phoenix dactylifera L volatile compositions. Res J Pharm and Tech 13(11):5207–5209. https://doi.org/10.5958/0974-360X.2020.00910.5

    Article  Google Scholar 

  68. Abuzer A, Amena A, Musarrat HW, Wasim A, Abu T (2021) Chemical characterization, antidiabetic and anticancer activities of Santolina chamaecyparissus. Saudi J of Bio Sci 28:4575–4580. https://doi.org/10.1016/j.sjbs.2021.404.060

    Article  Google Scholar 

  69. Samanta SL, Mafia SS, Sadman Sakib BR, Afroza AP, Armin TM, Pritesh RD (2018) Phytochemistry and pharmacological properties of Aegle marmelos L. (Rutaceae): a review. Inter J Res Pharm Pharmaceut Sci 3(3):45–54

    Google Scholar 

  70. Sun T, Zhang H, Dong Z, Liu Z, Zheng M (2020) Ultrasonic-promoted enzymatic preparation, identification and multi-active studies of nature identical phenolic acid glycerol derivatives. Royal Soc Chem 10:11139–11147. https://doi.org/10.1039/C9RA09830E

    Article  CAS  Google Scholar 

  71. Anil AM, Bency BJ, Helen PAM, Rani DYS (2018) Docking and in-vitro studies on antioxidant, antibacterial and cytotoxic properties of Cinnamon (Cinnamomum malabathrum). Inter J Res Analyt Rev 5(4):2349–5138

    Google Scholar 

  72. Zhao YY, Li XH, Wu SB, Li YM (2016) Temperature impact on hydrothermal depolymerization of Cunninghamia lanceolate enzymatic/mild acidolysis lignin in subcritical water. BioResources 11(1):21–32. https://doi.org/10.15376/biores.11.1.21-32

    Article  CAS  Google Scholar 

  73. Mangamuri UK, Muvva V, Poda S, Manavathi B, Bhujangarao C, Yenamandra V (2016) Chemical characterization and bioactivity of diketopiperazine derivatives from the mangrove derived Pseudonocardia endophytica. Egypt J Aquat Res 42:169–175. https://doi.org/10.1016/j.ejar.2016.03.001

    Article  Google Scholar 

  74. Govindaiah P, Dumala N, Grover P, Jaya Prakash M (2019) Synthesis and biological evaluation of novel 4,7-dihydroxycoumarin derivatives as anticancer agents. Bio-Org Med Chem Lett 29(14):1819–1824. https://doi.org/10.1016/j.bmcl.2019.05.008

    Article  CAS  Google Scholar 

  75. Arunmathi C, Malarvili T (2017) Analysis of bioactive compounds in methanol extract of Aplotaxis auriculata rhizome using GC-MS. J Pharmacog Phytochem 6(3):243–247

    CAS  Google Scholar 

  76. Ghareeb MA, Salwa AH, Mona F, Amina MI (2022) Chemical characterization, antibacterial, antibiofilm, and antioxidant activities of the methanolic extract of Paratapes undulatus clams (Born, 1778). J Appl Pharma Sci 12(05):219–228. https://doi.org/10.7324/JAPS.2022.120521

    Article  CAS  Google Scholar 

  77. Reza ASMA, Haque A, Sarker J, Nasrin S, Rahman M, Tareq M, Khan Z, Rashid M, Sadik G, Tsukahara T, Alam K (2021) Antiproliferative and antioxidant potentials of bioactive edible vegetable fraction of Achyranthes ferruginea Roxb. In cancer cell line. Food Sci-Nutri 9:3777–3805. https://doi.org/10.1002/fsn3.2343

    Article  CAS  Google Scholar 

  78. Prabha M, Brintha M, Lawrence B (2021) Molecular profiling and antioxidant potential of Citrus limon (L.) Burm.F fruits. Nat Volatiles Essent Oils 8(4):8360–8373

    CAS  Google Scholar 

  79. Anwar Z, Farhat U, Muhammad A, Sajjad A, Abdul S (2017) Demonstration of biological activities of extracts from Isodon rugosus Wall. Ex Benth: separation and identification of bioactive phytoconstituents by GC-MS analysis in the ethyl acetate extract. BMC Complement Altern Med 17:284. https://doi.org/10.1186/s12906-017-1798-9

    Article  CAS  Google Scholar 

  80. Kakarla L, Othayoth R, Botlagunta M (2016) Comparative biochemical studies on Indian sedges Cyperus scariosus R. Br and Cyperus rotundus L. Pharmacog J 8(6):598–609. https://doi.org/10.5530/pj.2016.6.14

    Article  CAS  Google Scholar 

  81. Rich M, Miranda LA, Malasaga JS, Kalaw SP, Reyes RG, Hou CT (2016) Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour. Biocat Agri Biotech 9:141–144. https://doi.org/10.1016/j.bcab.2016.12.003

    Article  Google Scholar 

  82. Niu T, Zhao X, Jiang J, Yan H, Li Y, Tang S, Li Y, Song D (2019) Evolution and biological evaluation of matrinic derivatives with amantadine fragments as new anti-influenza virus agents. Molecules 24(5):921. https://doi.org/10.3390/molecules24050921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ismail FMD, Levitsky DO, Dembitsky VM (2009) Aziridine alkaloids as potential therapeutic agents. European J Med Chem 44:3373–3387. https://doi.org/10.1016/j.ejmech.2009.05.013

    Article  CAS  Google Scholar 

  84. Enrika C, Albinas Z, Jolanta S (2022) Screening of some vegetables for the biotransformation of bicyclo[3.3.1]nonane- 2,6-diol diacetate. Green Chem Lett Rev 15(1):45–50. https://doi.org/10.1080/17518253.2021.2018505

    Article  CAS  Google Scholar 

  85. Susana-Gabriela C-R, Carmen-María L-S, Ema-Carina R-B, Francisco-Javier C-M, Carlos V, Javier H, Armando B-H (2021) Antimutagenic bis (2-ethylhexyl) phthalate isolated from octopus (Paraoctopus vulgaris). Food Sci and Tech Campinas 41(2):314–320. https://doi.org/10.1590/fst.26119

    Article  Google Scholar 

  86. Kumari N, Menghani E, Mithal R (2019) GC-MS analysis of compounds extracted from Actinomycetes AIA6 and study of its antimicrobial efficacy. Indian J Chem Tech 26:362–370

    CAS  Google Scholar 

  87. Annunziato G, Costanza S, Marialaura M, Nina F, Marialaura P, Mattia I, Agostino B, Marco P, Stefano B, Clotilde SC, Barbara C, Gabriele C (2022) Inhibitors of O-acetylserine sulfhydrylase with a cyclopropane-carboxylic acid scaffold are effective colistin adjuvants in gram negative bacteria. Pharmaceuticals 15:766. https://doi.org/10.3390/ph15060766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roy RN, Laskarb S, Sena SK (2005) Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbio Res 161:121–126. https://doi.org/10.1016/j.micres.2005.06.007

    Article  CAS  Google Scholar 

  89. Ganguly RK, Chakraborty SK (2019) Assessment of qualitative enrichment of organic paper mill wastes through vermicomposting: humification factor and time of maturity. Heliyon 5:e01638. https://doi.org/10.1016/j.heliyon.2019.e01638

    Article  PubMed  PubMed Central  Google Scholar 

  90. Premjanu N, Jaynthy C (2014) Antimicrobial activity of Diethyl Phthalate: an insilico approach. Asian J Pharma Clinic Res 7(4):141–142

    CAS  Google Scholar 

  91. Daffodil ED, Uthayakumari FK, Mohan VR (2012) GC-MS determination of bioactive compounds of Curculigo orchioides Gaertn. Sci Res Rep 2(3):198–201

    Google Scholar 

  92. Gollo AL, Valcineide OAT, de Gilberto Vinícius MP, Oranys M, Sandro José RB, Suzany S, de Ivan Ricardo B, Carlos RS (2020) Phytochemical analysis and biological activities of in vitro cultured Nidularium procerum, a bromeliad vulnerable to extinction. Sci Rep 10:7008. https://doi.org/10.1038/s41598-020-64026-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Akwu NA, Naidoo Y, Singh M, Nundkumar N, Lin J (2019) Phytochemical screening, in vitro evaluation of the antimicrobial, antioxidant and cytotoxicity potentials of Grewia lasiocarpa E. Mey. Ex Harv. South African J of Bot 123:180–192. https://doi.org/10.1016/j.sajb.2019.03.004

    Article  CAS  Google Scholar 

  94. Erwin E, Pusparohmana WR, Sari IP, Hairani R, Usman U (2019) GC-MS profiling and DPPH radical scavenging activity of the bark of Tampoi (Baccaurea macrocarpa). F1000 Res. https://doi.org/10.12688/f1000research.16643.2

    Article  Google Scholar 

  95. Malathi K, Anbarasu A, Ramaiah S (2015) Ethyl Iso-allocholate from a medicinal rice karungkavuni inhibits dihydropteroate synthase in Escherichia coli: a molecular docking and dynamics study. Indian J Pharma Sci 78(6):780–788. https://doi.org/10.4172/pharmaceutical-sciences.1000184

    Article  Google Scholar 

  96. Tan M, Zhou L, Huang Y, Wang Y, Hao X, Wang J (2008) Antimicrobial activity of globulol isolated from the fruits of Eucalyptus globulus Labill. Nat Pro Lett 22(7):569–575. https://doi.org/10.1080/14786410701592745

    Article  CAS  Google Scholar 

  97. Hegazy SS, Helmy H, Salama MS, Lofty NM, Mahmoud DM (2020) The anti-diabetic effect of nano-encapsulated propolis from Apis mellifera on Type 2 Diabetes. Current Appl Sci and Tech 2(1):88–103

    Google Scholar 

  98. Vanithaa V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E, Praseetha PK (2020) Heneicosane—a novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind Crops Prod 154:112748. https://doi.org/10.1016/j.indcrop.2020.112748

    Article  CAS  Google Scholar 

  99. Sundarapandian S, Hussain Dowlath MJ, Karuppannan SK, Saravanan M, Arunachalam KD (2020) Effect of solvent on the phytochemical extraction and GC-MS analysis of Gymnema sylvestre. Pharmacog J 12(4):749–761. https://doi.org/10.5530/pj.2020.12.108

    Article  CAS  Google Scholar 

  100. Watekar R, Rajput D, Rathi B, Wanjari A (2020) Phyotochemical screening of oil extracted from two categories of fruit of Semecarpus anacardium Linn. by using traditional Indian oil extraction method. Inter J Bot Stud 5(4):236–248

    Google Scholar 

  101. Ashraf I, Muhammad Z, Komal R, Nasir R, Muhammad J, Shakeel AK, Rasool BT, Viqar UA, Abid M, Muhammad R, Zia-Ul-Haq M, Hawa ZEJ (2018) Chemical composition, antioxidant and antimicrobial potential of essential oils from different parts of Daphne mucronate. Chem Central J 12:135. https://doi.org/10.1186/s13065-018-0495-1

    Article  CAS  Google Scholar 

  102. François N, Charity NM, Fred O, Meryl C, Nicholas A, Jones OM, Elizabeth MK (2020) Antimycobacterial activities, cytotoxicity and phytochemical screening of extracts for three medicinal plants growing in Kenya. J of Med Plants Res 14(4):129–143. https://doi.org/10.5897/JMPR2020.6905

    Article  Google Scholar 

  103. Tao MH, Yan J, Wei XY, Li DL, Zhang WM, Tan JW (2011) A novel sesquiterpene alcohol from Fimetariella rabenhorstii, an endophytic fungus of Aquilaria sinensis. Nat Product Comm 6(6):763–766

    CAS  Google Scholar 

  104. Seeburger VC, D’Alvise P, Shaaban B, Schweikert K, Lohaus G, Schroeder A, Hasselmann M (2020) The trisaccharide melezitose impacts honeybees and their intestinal microbiota. PLoS ONE 15(4):e0230871. https://doi.org/10.1371/journal.pone.0230871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ismail Abiola A, Hasni A, Samian MR (2019) Methyl Elaidate: A major compound of potential anticancer extract of Moringa oleifera seeds binds with Bax and MDM2 (p53 Inhibitor) In silico. Pharmacogn Mag 14:554–557. https://doi.org/10.4103/pm.pm_125_18

    Article  CAS  Google Scholar 

  106. Rokade YB, Sayyed RZ (2009) Naphthalene derivatives: a new range of antimicrobials with high therapeutic value. Rasayan J of Chem 2:972–980

    CAS  Google Scholar 

  107. Hibon P, Seggern HV, Tseng HR, Leonhard C, Hamburger M, Bealle G (2019) Improved thin film stability of differently formulated, printed, and crosslinked polymer layers against successive solvent printing. J Appl Polym Sci 137(1):48895. https://doi.org/10.1002/app.48895

    Article  CAS  Google Scholar 

  108. Mazumder K, Nabila A, Asma A, Farahnaky A (2020) Bioactive variability and in-vitro and in-vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: a comprehensive substantiation. Antioxidants 9:282. https://doi.org/10.3390/antiox9040282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Belkacemi L, Belalia M, Djendara A (2020) Antioxidant and antibacterial activities and identification of bioactive compounds of various extracts of Caulerpa racemose from Algerian coast. Asian Pacific J of Trop Biomed 10(2):87–94. https://doi.org/10.4103/2221-1691.275423

    Article  CAS  Google Scholar 

  110. Owoeye TF, Kehinde AD, Ajani OO (2023) Proximate composition, phytochemical screening and mineral content studies of leaves extract of Adenanthera pavonine. Arab J of Basic and Appl Sci 30(1):317–328. https://doi.org/10.7324/RJC.2017.1031712

    Article  Google Scholar 

  111. Ya** Z, Cao F, Luo F, Lin Q (2022) Octacosanol and health benefits: biological functions and mechanisms of action. Food Biosci 47:101632. https://doi.org/10.1016/j.fbio.2022.101632

    Article  CAS  Google Scholar 

  112. Marcial-Medina C, Ordoñez-Moreno A, Gonzalez-Reyes C, Cortes-Reynosa P, Salazar EP (2019) Oleic acid induces migration through a FFAR1/4, EGFR and AKT-dependent pathway in breast cancer cells. Endocr Connect 8(3):252–265. https://doi.org/10.1530/EC-18-0543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carta G, Murru E, Banni S, Manca C (2017) Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol 8:902. https://doi.org/10.3389/fphys.2017.00902

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sarwar R, Farooq U, Naz S, Riaz N, Bukhari SM, Rauf A, Yahia N, Al-Showiman SS (2018) Isolation and characterization of two new antimicrobial acids from Quercus incana (Bluejack Oak). BioMed Res Inter Article ID 3798105:5. https://doi.org/10.1155/2018/3798105

    Article  CAS  Google Scholar 

  115. Arserim-Ucar D-K, Gecibesler İ-H, Sudagidan M, Dursun İ, Süzerer V, Solmaz R (2020) Determination of biological activity, lipophilic and volatile organic compounds of Bingöl Propolis Isolates. Turkish J of Nat and Sci 9:92–102

    Google Scholar 

  116. Jianguo R, Wang J, Karthikeyan S, Liu H, Cai J (2019) Natural anti-phytopathogenic fungi compound phenol, 2, 4-bis (1, 1-dimethylethyl) from Pseudomonas fluorescens TL-1. Indian J of Biochem & Biophy 56:162–168

    Google Scholar 

  117. Devi TS, Vijay K, Vidyavathi RM, Kumar P, Govarthanan M, Kavitha T (2021) Antifungal activity and molecular docking of phenol, 2,4-bis(1,1-dimethylethyl) produced by plant growth-promoting actinobacterium Kutzneria sp. strain TSII from mangrove sediments. Arch Microbio 203(7):4051–4064. https://doi.org/10.21203/rs.3.rs-291369/v1

    Article  CAS  Google Scholar 

  118. Kant K, Lal UR, Ghosh M (2019) Antibacterial activity with bacterial growth kinetics and GC-MS studies on leaf and tuber extracts of Arisaema tortuosum (Wall.) Schott. Indian J Pharma Edu Res. https://doi.org/10.5530/ijper.53.3s.98

    Article  Google Scholar 

  119. Pratibha S, Krishnan K (2016) Bioactivity of Pyrrolo[1,2-A] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)- extracted from Streptomyces sp. VITPK9 isolated from the salt spring habitat of Manipur, India. Asian J Pharma 10(4):265

    Google Scholar 

  120. Asnaasharia S, Delazarb A, Safarzadehd E, Tabibie H, Mollaeif S, Rajabig A, Asgharianb P (2019) Phytochemical analysis and various biological activities of the aerial parts of Scrophularia Atropatana growing in Iran. Iranian J Pharma Res 18(3):1543–1555. https://doi.org/10.22037/ijpr.2019.1100782

    Article  CAS  Google Scholar 

  121. Rhetso T, Shubharani R, Roopa MS, Sivaram V (2020) Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don Future J Pharma Sci 6:102. https://doi.org/10.1186/s43094-020-00100-7

    Article  Google Scholar 

  122. Osama GR, Mamdouh D, Bedair R, Smetanska I, Gruda N, Yousif S, Omer RM, Althobaiti TA, El-Raouf H, El-Taher AM, El-Sayed AS, Eldemerdash MM (2023) Distinguishing features of Lycium L. species (family Solanaceae) distributed in Egypt based on their anatomical, metabolic, molecular, and ecological characteristics. Front Plant Sci 14:1162695. https://doi.org/10.3389/fphar.2014.00181

    Article  CAS  Google Scholar 

  123. Sundar RDV, Arunachalam S (2023) Effect of endophytic fungi Daldinia eschscholtzii against multidrug resistant pathogens. Bangladesh J Pharm. https://doi.org/10.3329/bjp.v18i1.62914

    Article  Google Scholar 

  124. Liu YH, Hu XP, Li W, Cao XY (2016) Antimicrobial and antitumor activity and diversity of endophytic fungi from traditional Chinese medicinal plant Cephalotaxus hainanensis Li. Genetics and Mol Res 15(2):15028633

    Article  Google Scholar 

  125. Arenal F, Platas G, Pela´ez F (2005) Preussia africana and Preussia isabellae, two new Preussia species based on morphological and molecular evidence. Fungal Divers 20:1–15

    Google Scholar 

  126. Chang JH, Wang YZ (2009) The genera Sporormia and Preussia (Sporormiaceae, Pleosporales) in Taiwan. Nova Hedwigia 1(2):245–254. https://doi.org/10.1127/0029-5035/2009/0088-0245

    Article  Google Scholar 

  127. Chen X, Shi Q, Lin G, Guo S, Yang J (2009) Spirobisnaphthalene analogues from the endophytic fungus Preussia sp. J Nat Prod 72(9):1712–1715. https://doi.org/10.1021/np900302w

    Article  CAS  PubMed  Google Scholar 

  128. Amin RM, Strobel GA, Vishnevetsky M, Ren Y, Geary B (2010) Biologically active endophytic Quambalaria sp. from Leptospermum junipae in Australia. Mycology 1(1):67–74

    Article  CAS  Google Scholar 

  129. Debbab A, Aly A, Edrada-Ebel R, Müller W, Mosaddak M, Hakiki A, Ebel R, Proksch P (2009) Bioactive secondary metabolites from the endophytic fungus Chaetomium sp. isolated from Salvia officinalis growing in Morocco. Biotechnol Agron Soc Environ 13(2):229–234

    CAS  Google Scholar 

  130. Phongpaichit S, Rukachaisirikul V (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia sp. FEMS Immunol Med Microbiol 48(3):367–372

    Article  CAS  PubMed  Google Scholar 

  131. Rachel RM, Kotiw M, Davis RA, John DWD (2013) The diversity and antimicrobial activity of Preussia sp. endophytes isolated from Australian dry rainforests. Curr Microbiol 68:30–37. https://doi.org/10.1007/s00284-013-0415-5

    Article  CAS  Google Scholar 

  132. Weerasinghe RH, Shevkar CD, Maduranga K, Attanayake RN, Paranagama PA (2021) Bioactive properties and metabolite profiles of endolichenic fungi in mangrove ecosystem of Negombo Lagoon, Sri Lanka. Nat Product Comm. https://doi.org/10.1177/1934578X211048652

    Article  Google Scholar 

  133. Cardoza RE, Hermosa MR, Vizcaino JA, Sanz L, Monte E, Gutiérrez S (2005) Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. In: Mellado E, Barredo JL (eds) Microorganisms for Industrial Enzymes and Biocontrol. Research Signpost, Kerala, pp 1–22

    Google Scholar 

  134. Khethr FBH, Ammar S, Saïdana D, Daami M, Chriaa J, Liouane K, Mahjoub MA, Helal AN, Mighri Z (2008) Chemical composition, antibacterial and antifungal activities of Trichoderma sp. growing in Tunisia. Ann Microbiol 58(2):303–308. https://doi.org/10.1007/BF03175334

    Article  CAS  Google Scholar 

  135. Velanganni J, Kadamban D, Ramamoorthy D (2011) Phytochemical screening and antimicrobial activity of the stem of Mallotus philippensis (Lam.) Muell. Arg Var Philippensis. Int J Pharmacol Pharmaceut Sci 3(2):160e163

    Google Scholar 

  136. Nigora R, Yanhua G, Yong Z, Abulimiti Y (2020) Biological activity of endophytic fungi from the roots of the medicinal plant Vernonia anthelmintica. Microorganisms 8(4):586. https://doi.org/10.3390/microorganisms8040586

    Article  CAS  Google Scholar 

  137. Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: Impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86(6):1659–1670. https://doi.org/10.1007/s00253-010-2509-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fuad A, Abobakr A, Mona AT, Nouf AE, Ahmed AS, Raha O (2021) Epigenetic modifiers affect the bioactive compounds secreted by an endophyte of the tropical plant Piper longum. Molecules 26(1):29. https://doi.org/10.3390/molecules26010029

    Article  CAS  Google Scholar 

  139. Manickavelu M, Krishnan K (2017) Marine streptomyces sp. VITMK1 derived pyrrolo [1, 2-A] pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl) and its free radical scavenging activity. Open Bioactive Comp J 5:23–30. https://doi.org/10.2174/1874847301705010023

    Article  Google Scholar 

  140. Chakraborty B, Kumar RS, Almansour AI, Gunasekaran P, Nayaka S (2022) Bioprospection and secondary metabolites profiling of marine Streptomyces levis strain KS46. Saudi J of Biol Sci 29(2):667–679

    Article  CAS  Google Scholar 

  141. Sharma R, Takashi M, Mahesh K, Kaushik TS, Hiroshi O, Yunong W, Kaori M, Takuya S, Yuka O, Yuhei M, Yang M, Zahara M, Saber HI, Shigeru Y, Hiroaki S et al (2019) Octacosanol and policosanol prevent high-fat diet-induced obesity and metabolic disorders by activating brown adipose tissue and improving liver metabolism. Sci Rep 9(1):5169. https://doi.org/10.1038/s41598-019-41631-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Phil Trans R Soc A 374:20150202

    Article  PubMed  PubMed Central  Google Scholar 

  143. Naga VKA, Nadeem MD, Pardha SM, Mahendran B, Bharathi S (2014) Cumulative activity of the p-coumaric acid and syringaldehyde for antimicrobial activity of different microbial strains. European J of Exp Bio 4(6):40–43

    Google Scholar 

Download references

Acknowledgements

The work was supported by financial assistance from CSIR, New Delhi, India in the form of research fellowship. The authors are grateful to the Director, CSIR-National Botanical Research Institute, Lucknow for providing essential laboratory facilities under in-house project OLP 0114. The manuscript number of the institute is CSIR-NBRI_MS/2023/04/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeva Nayaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6736 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakarwarti, J., Anand, V., Nayaka, S. et al. In vitro Antibacterial Activity and Secondary Metabolite Profiling of Endolichenic Fungi Isolated from Genus Parmotrema. Curr Microbiol 81, 195 (2024). https://doi.org/10.1007/s00284-024-03719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03719-4

Navigation