Characterization of Bioactive Secondary Metabolites of Fungal Endophytes from Melghat Forest in Maharashtra, India

  • Chapter
  • First Online:
Bioactive Natural products in Drug Discovery

Abstract

In recent years, endophytic fungi associated with medicinal plants have received much attention because of their special ability to synthesize analogous and non-analogous secondary metabolites with interesting biological activities. This study focuses on antibacterial potential of endophytic Nigrospora oryzae isolated from Vitex negundo, a medicinal plant collected from Melghat forest of Amravati District of Maharashtra, India. The endophytic fungus was grown over Potato Dextrose Broth (PDB) and then further extracted with ethyl acetate (EA). The crude EA extract was further screened for its antibacterial property via disc diffusion method against three pathogenic microorganisms such Escherichia coli (MTCC 1698), Pseudomonas aeruginosa (MTCC 6458) and Staphylococcus aureus (MTCC 2639). The crude EA residue exhibited prominent microbial activity (11.16–16.67 mm) against tested pathogens. Furthermore, the EA extract was analysed by GC/MS for characterization of bioactive fungal metabolites. TheGC/MS analysis suggested the presence of major compounds like phenol 2,4-bis(1,1-dimethylethyl), 3-hexadecyloxycarbonyl-5-(2-hydroxyethyl)-4-methylimidazolium ion, naphthalene, 1,2-benzenedicarboxylic acid diisooctyl ester and eicosene. The antibacterial activity exhibited by the EA extract might be attributed to these compounds solely or synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bussaban B, Lumyong S, Lumyong P, Hyde KD, Mckenzie EHC (2001) Two new species of endophytes (ascomycetes) from Zingiberaceae. Nova Hedwigia 73:487–493

    Google Scholar 

  • Chaudhary MI, Musharraf T, Shaheen F et al (2004) Isolation of bioactive compounds from Aspergillus terreus. J Biosci 59:324–327

    Google Scholar 

  • Daisy BH, Strobel GA, Castillo U et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741

    Article  CAS  PubMed  Google Scholar 

  • De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. In: Hofmeister’s handbook of physiological botany, vol II. Engelmann, Leipzig

    Google Scholar 

  • Desale MG, Bodhankar MG (2013) Antimicrobial activity of endophytic fungi isolated from Vitex negundo Linn. Int J Curr Microbiol App Sci 2(12):389–395

    Google Scholar 

  • Devi NN, Singh MS (2013) GC-MS analysis of metabolites from endophytic fungus Colletotrichum gloeosporioides isolated from Phlogacanthus thyrsiflorus Nees. Int J Pharm Sci Rev Res 23(2):392–395

    Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69(8):1121–1124

    Google Scholar 

  • Guimaraes DO, Borges WS, Kawano CY et al (2008) Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia. Fems Immunol Med Microbiol 52:134–144

    Article  CAS  PubMed  Google Scholar 

  • Harper JK, Arif AM, Ford EJ et al (2003) Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476

    Article  CAS  Google Scholar 

  • Hasan SMR, Hossain MM, Akter R et al (2009) DPPH free radical scavenging activity of some Bangladeshi medicinal plants. J Med Plants Res 3(11):875–879

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hong D, DeFillipps RA (2000) Commelina diffusa. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, Bei**g science press. Missouri Botanical Garden Press, St Louis, p 86

    Google Scholar 

  • Huang WY, Cai WZ, Hyde KD et al (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Huang Y, Wang J, Li G et al (2001) Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis. FEMS Immunol Med Microbiol 31:163–167

    Article  CAS  PubMed  Google Scholar 

  • Katoch M, Paul A, Singh G, Sridhar SNC (2017) Fungal endophytes associated with Viola odorata Linn. as bioresource for pancreatic lipase inhibitors. BMC Complement Altern Med 17:385

    Google Scholar 

  • Khan R, Shahzad S, Choudhary MI, Khan SA, Ahmad A (2010) Communities of endophytic fungi in medicinal plant Withania somnifera. Pak J Bot 42:1281–1287

    Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):159–162

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32(6):297–303

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7. https://doi.org/10.1021/np800455b

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen Q, Yanli Z et al (2005) Screening for endophytic fungi with antitumour and antifungal activities from Chinese medicinal plants. W J Microbiol Biotech 21:1515–1519

    Article  Google Scholar 

  • Meshram V, Saxena S, Kapoor N (2012) In vitro anti-staphylococcal potential of endophytic fungi from Aegle marmelos. J Pure and App Microbiol 6(4):1859–1868

    Google Scholar 

  • Meshram V, Saxena S, Paul K (2016) Xylarinase: a novel clot busting enzyme from an endophytic fungus Xylaria curta. J Enzyme Inhib Med Chem 31:1–10

    Article  Google Scholar 

  • Pavithra N, Sathish L, Ananda K (2012) Antimicrobial and enzyme activity of endophytic fungi isolated from Tulsi. J Pharm Biomed Sci 16:1–6

    Google Scholar 

  • Petersen PJ, Wang TZ, Dushin RG et al (2004) Comparative in vitro activities of AC98-6446, a novel semisynthetic glycopeptide derivate of the natural product mannopeptimycin alpha and other antimicrobial agents against Gram-positive clinical isolates. Antim Agents Chemother 48:739–746

    Article  CAS  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. Microbiology of the phyllosphere. In: Fokkema NJ, van den Heuvel J (eds) . Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Powthong P, Jantrapanukorn B, Thongmee A, Suntornthiticharoen P (2012) Evaluation of endophytic fungi extract for their antimicrobial activity from Sesbania grandiflora (L.) Pers. Int J Pharm Biomed Res 3:132–136

    Google Scholar 

  • Prabakaran JJ, Nameirakpam ND, Femina W (2012) Antibiogram pattern of endophytic fungi isolated from medicinal plant Centella asiatica. J Pharm Res 5(1):205–207

    Google Scholar 

  • Prasher IB, Dhanda RK (2017) GC-MS analysis of secondary metabolites of endophytic Nigrospora sphaerica isolated from Parthenium hysterophorus. Int J Pharm Sci Rev Res 44(1):217–223

    CAS  Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, Mckenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    Article  PubMed  Google Scholar 

  • Rodrigues KF, Hesse M, Werner C (2000) Antimicrobial activities of secondary metabolites produced by endophytic fungi from Spondias mombin. J Basic Microbiol 40:261–267

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S et al (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 9:996–1004

    Article  Google Scholar 

  • Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S, Prasad R (2019a) Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. Physiol Plant. https://doi.org/10.1111/ppl.13002

  • Singh S, Kumar V, Singh S, Singh J (2019b) Influence of humic acid, iron and copper on microbial degradation of fungicide Carbendazim. Biocatal Agric Biotechnol 20:101196. https://doi.org/10.1016/j.bcab.2019.101196

    Article  Google Scholar 

  • Strobel G, Stierle A, Hess WM (1993) Taxol formation in yew – Taxus. Plant Sci 92:1–12

    Article  CAS  Google Scholar 

  • Strobel G (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514–522

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting of microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2002) Microbial gifts from rain forests. Can J Plant Pathol 24:14–20

    Article  Google Scholar 

  • Suryanarayanan TS, Kumarsan V, Jonson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Murali TS, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rain fall gradient. Can J Bot 80:818–826

    Article  Google Scholar 

  • Suryanrayanan TS, Kumaresan V, Johnson JA (2001) Fungal endophytes: the tropical dimension. In: Misra JK, Horn BW (eds) Trichomycetes and other fungal groups. Science Publishers Inc., Enfield, NH, pp 197–207

    Google Scholar 

  • Ul-Hassan SR, Strobel GA, Booth E, Knighton B, Floerchinger C, Sears J (2012) Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. CI-4. Microbiology 158:465–473

    Article  PubMed  Google Scholar 

  • Vogl AE (1898) Mehl und die anderen Meblprodukte der Cerealien und Leguminosen. Nahrungsm Unters Hyg Warenk 12:25–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suradkar, K., Hande, D. (2020). Characterization of Bioactive Secondary Metabolites of Fungal Endophytes from Melghat Forest in Maharashtra, India. In: Singh, J., Meshram, V., Gupta, M. (eds) Bioactive Natural products in Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-1394-7_21

Download citation

Publish with us

Policies and ethics

Navigation