Log in

The effect of p53 gene expression on the inhibition of cell proliferation by paclitaxel

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background/Aims

We evaluated the relationship between p53 status and paclitaxel (PTX)-induced inhibition of the growth of human stomach cancer cells.

Materials and methods

We made use of two human stomach cancer cell lines, MKN45 and MKN28. Growth inhibition in response to PTX was evaluated by MTT method. We used flow cytometry to monitor the cell cycle and western blot analysis to evaluate the expression of signaling molecules.

Results

PTX inhibited the proliferation of both stomach cancer cell lines in a dose-dependent manner. However, PTX cytotoxicity was stronger in MKN28 cells. Flow cytometric analysis showed that 1 μM PTX enhanced the percentage of MKN 45 cells in the sub-G1 phase of the cell cycle, whereas it increased the percentage of MKN 28 cells arrested at G2/M phase. 1 μM PTX was found to increase cyclin B1 production in MKN28 cells, but not in MKN 45 cells. In contrast, PTX-treatment led to an increase in the cleaved form of caspase-3 in MKN45, but not MKN28 cells. An inhibitor of p53, pifithrin-α, antagonized the expression of the cleaved form of caspase-3 in MKN45 cells.

Conclusion

Both p53 status and cyclin-B1 expression might be useful for predicting the therapeutic response of stomach cancer to PTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cutsem EV (2004) The treatment of advanced gastric cancer: new findings on the activity of the taxanes. Oncologist 9:9–15

    Article  PubMed  Google Scholar 

  2. Murad AM, Santiago FF, Petroianu A et al (1993) Modified therapy with 5-fluorouracil, doxorubicin, and methotrexate in advanced gastric cancer. Cancer 72:37–41

    Article  PubMed  CAS  Google Scholar 

  3. Glimelius B, Ekström K, Hoffman K et al (1997) Randomized comparison between chemotherapy plus best supportive care with best supportive care in advanced gastric cancer. Ann Oncol 8:163–168

    Article  PubMed  CAS  Google Scholar 

  4. Chang YF, Li LL, Wu CW et al (1996) Paclitaxel-induced apoptosis in human gastric carcinoma cell lines. Cancer 77:14–18

    Article  PubMed  CAS  Google Scholar 

  5. Hironaka S, Zenda S, Boku N et al (2006) Weekly paclitaxel as second-line chemotherapy for advanced or recurrent gastric cancer. Gastric Cancer 9:14–18

    Article  PubMed  CAS  Google Scholar 

  6. Yamada Y, Shirao K, Ohtsu A et al (2001) Phase II trial of paclitaxel by three-hour infusion for advanced gastric cancer with short premedication for prophylaxis against paclitaxel-associated hypersensitivity reactions. Ann Oncol 12:1133–1137

    Article  PubMed  CAS  Google Scholar 

  7. Ohtsu A, Boku N, Tamura F et al (1998) An early phase II study of a 3-hour infusion of paclitaxel for advanced gastric cancer. Am J Clin Oncol 21:416–419

    Article  PubMed  CAS  Google Scholar 

  8. Amos LA, Löwe J (1999) How taxol stabilises microtubule structure. Chem Biol 6:65–69

    Article  Google Scholar 

  9. Crown J, O’Leary M (2000) The taxanes: an update. Lancet 355:1176–1178

    Article  PubMed  CAS  Google Scholar 

  10. Yoo YD, Park JK, Choi JY et al (1998) CDK4 down-regulation induced by paclitaxel is associated with G1 arrest in gastric cancer cells. Clin Cancer Res 4:3063–3068

    PubMed  CAS  Google Scholar 

  11. Mullan PB, Quinn JE, Gilmore PM et al (2001) BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 20:6123–6131

    Article  PubMed  CAS  Google Scholar 

  12. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89:7491–7495

    Article  PubMed  CAS  Google Scholar 

  13. Kastan MB, Onyekwere O, Sidransky D et al (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    PubMed  CAS  Google Scholar 

  14. Petak I, Tillman DM, Houghton JA (2000) P53 dependence of Fas induction and acute apoptosis in response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines. Clin Cancer Res 6:4432–4441

    PubMed  CAS  Google Scholar 

  15. Matsuhashi N, Saio M, Matsuo A et al (2004) Expression of p53 protein as a predictor of the response to 5-fluorouracil and cisplatin chemotherapy in human gastrointestinal cancer cell lines evaluated with apoptosis by use of thin layer collagen gel. Int J Oncol 24:807–813

    PubMed  CAS  Google Scholar 

  16. Lavarino C, Pilotti S, Oggionni M et al (2000) P53 gene status and response to platinum/paclitaxel-based chemotherapy in advanced ovarian carcinoma. J Clin Oncol 18:3936–3945

    PubMed  CAS  Google Scholar 

  17. Debernardis D, Siré EG, Feudis PD et al (1997) P53 status does not affect sensitivity of human ovarian cancer cell lines to paclitaxel. Cancer Res 57:870–874

    PubMed  CAS  Google Scholar 

  18. Wahl AF, Donaldson KL, Fairchild C et al (1996) Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2:72–79

    Article  PubMed  CAS  Google Scholar 

  19. Osada S, Imai H, Tomita H et al (2006) Vascular endothelial growth factor protects hepatoma cells against oxidative stress-induced cell death. J Gastroenterol Hepatol 21:988–993

    Article  PubMed  CAS  Google Scholar 

  20. Osada S, Saji S, Osada K (2001) Critical role of extracellular signal-regulated kinase phosphorylation on menadione (vitamin K3) induced growth inhibition. Cancer 91:1156–1165

    Article  PubMed  CAS  Google Scholar 

  21. Komarov PG, Komarova EA, Kondratov RV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  PubMed  CAS  Google Scholar 

  22. Rocha S, Campbell KJ, Roche KC, Perkins ND (2003) The p53-inhibitor pifithrin-α inhibits firefly luciferase activity in vivo and in vitro. BMC Mol Biol 4:9

    Article  PubMed  Google Scholar 

  23. Pirollo KF, Bouker KB, Chang EH (2000) Does p53 status influence tumor response to anticancer therapies? Anticancer Drugs 11:419–432

    Article  PubMed  CAS  Google Scholar 

  24. Bates S, Vousden KH (1999) Mechanisms of p53-mediated apoptosis. Cell Mol Life Sci 55:28–37

    Article  PubMed  CAS  Google Scholar 

  25. Stürzbecher HW, Chumakov P, Welch WJ, Jenkins JR (1987) Mutant p53 proteins bind hsp 72/73 cellular heat shock-related proteins in SV 40-transformed monkey cells. Oncogene 1:201–211

    PubMed  Google Scholar 

  26. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) P53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  27. Kim R, Tanabe K, Inoue H, Toge T (2002) Mechanism(s) of antitumor action in protracted infusion of low dose 5-fluorouracil and cisplatin in gastric carcinoma. Int J Oncol 20:549–555

    PubMed  CAS  Google Scholar 

  28. Woods CM, Zhu J, McQueney PA et al (1995) Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol Med 1:506–526

    PubMed  CAS  Google Scholar 

  29. Torres K, Horwitz SB (1998) Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res 58:3620–3626

    PubMed  CAS  Google Scholar 

  30. Morrison DK, Cutler RE (1997) The complexity of Raf-1 regulation. Curr Opin Cell Biol 9:174–179

    Article  PubMed  CAS  Google Scholar 

  31. Blagosklonny MV, Giannakakou P, El-Deiry WS et al (1997) Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 57:130–135

    PubMed  CAS  Google Scholar 

  32. Joshi B, Rastogi S, Morris M et al (2007) Differential regulation of human YY1 and caspase 7 promoters by prohibitin through E2F1 and p53 sites. Biochem J 401(1):155–166

    Article  PubMed  CAS  Google Scholar 

  33. Swanton C (2004) Cell-cycle targeted therapies. Lancet Oncol 5:27–36

    Article  PubMed  CAS  Google Scholar 

  34. Osada S, Kanematsu M, Imai H et al (2005) Evaluation of extracellular signal regulated kinase expression and its relation to treatment of hepatocellular carcinoma. J Am Coll Surg 201:405–411

    Article  PubMed  Google Scholar 

  35. Castedo M, Perfettini JL, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837

    Article  PubMed  CAS  Google Scholar 

  36. Cappelletti V, Fioravanti L, Miodini P, Di Fronzo G (2000) Genistein blocks breast cancer cells in the G2/M phase of the cell cycle. J Cell Biochem 79:594–600

    Article  PubMed  CAS  Google Scholar 

  37. Kasahara T, Kuwayama C, Hashiba M et al (2003) The gene expression of hepatic proteins responsible for DNA repair and cell proliferation in tamoxifen-induced hepatocarcinogenesis. Cancer Sci 94:582–588

    Article  PubMed  CAS  Google Scholar 

  38. Innocente SA, Abrahamson JLA, Cogswell JP, Lee JM (1999) P53 regulates a G2 checkpoint though cyclin B1. Proc Natl Acad Sci USA 96:2147–2152

    Article  PubMed  CAS  Google Scholar 

  39. Ianzini F, Bertoldo A, Kosmacek EA et al (2006) Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells. Cancer Cell Int 6:11

    Article  PubMed  Google Scholar 

  40. Okano J, Rustgi AK (2001) Paclitaxel induces prolonged activation of the Ras/MEK/ERK pathway independently of activating the programmed cell death machinery. J Biol Chem 276:19555–19564

    Article  PubMed  CAS  Google Scholar 

  41. Huisman C, Ferreira CG, Bröker LE et al (2002) Paclitaxel triggers cell death primarily via caspase-independent routes in the non-small cell lung cancer cell line NCI-H460. Clin Cancer Res 8:596–606

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Osada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakashita, F., Osada, S., Takemura, M. et al. The effect of p53 gene expression on the inhibition of cell proliferation by paclitaxel. Cancer Chemother Pharmacol 62, 379–385 (2008). https://doi.org/10.1007/s00280-007-0614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0614-5

Keywords

Navigation