Log in

IRE1α inhibitor enhances paclitaxel sensitivity of triple-negative breast cancer cells

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer is the most commonly diagnosed cancer in women, and triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of all breast cancers. TNBC is highly invasive and malignant. Due to the lack of relevant receptor markers, the prognosis of TNBC is poor and the five-year survival rate is low. Paclitaxel is the first-line drug for the treatment of TNBC, which can inhibit cell mitosis. However, many patients develop drug resistance during treatment, leading to chemotherapy failure. Therefore, finding new therapeutic combinations to overcome TNBC drug resistance can provide new strategies for improving the survival rate of TNBC patients.

Methods

Cell viability assay, RT-qPCR, Colony formation assay, Western blot, and Xenogeneic transplantation methods were used to investigate roles and mechanisms of IRE1α/XBP1s pathway in the paclitaxel-resistant TNBC cells, and combined paclitaxel and IRE1α inhibitor in the treatment of TNBC was examined in vitro and in vivo.

Results

We found activation of UPR in paclitaxel-resistant cells, confirming that IRE1α/XBP1 promotes paclitaxel resistance in TNBC. In addition, we demonstrated that the combination of paclitaxel and IRE1α inhibitors can synergistically inhibit the proliferation of TNBC tumors both in vitro and in vivo,suggesting that IRE1α inhibitors combined with paclitaxel may be a new treatment option for TNBC.

Conclusions

In this study, we demonstrated the important role of IRE1α signaling in mediating paclitaxel resistance and identified that combination therapies targeting IRE1α signaling could overcome paclitaxel resistance and enhance chemotherapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data yield or analyzed during this study included in this article.

References

  1. R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023. CA: A Cancer J. Clin. 73(1), 17–48 (2023). https://doi.org/10.3322/caac.21763

    Article  Google Scholar 

  2. J.W. Zhu, P. Charkhchi, S. Adekunte, M.R. Akbari, What is known about breast cancer in young women? Cancers 15(6), 1917 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. CA: A Cancer J. Clin. 72(1) (2022)

  4. C. Luo, N. Li, B. Lu, J. Cai, M. Lu, Y. Zhang, H. Chen, M. Dai, Global and regional trends in incidence and mortality of female breast cancer and associated factors at national level in 2000 to 2019. Chinese Med. J. 135(01), 42–51 (2022)

    Article  Google Scholar 

  5. J. Li, Z. Chen, K. Su, J. Zeng, Clinicopathological classification and traditional prognostic indicators of breast cancer. Int. J. Clin. Exp. Pathol. 8(7), 8500 (2015)

    PubMed  PubMed Central  Google Scholar 

  6. A.C. Garrido-Castro, N.U. Lin, K. Polyak, Insights into Molecular Classifications of Triple-Negative Breast Cancer: improving Patient Selection for Treatment. Cancer Discovery 9(2), 176–198 (2019). https://doi.org/10.1158/2159-8290.Cd-18-1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S.G. Ahn, S.J. Kim, C. Kim, J. Jeong, Molecular classification of triple-negative breast cancer. J Breast Cancer 19(3), 223 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  8. H. Muley, R. Fado, R. Rodriguez-Rodriguez, N. Casals, Drug uptake-based chemoresistance in breast cancer treatment. Biochem. Pharmacol. 177, 113959 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. J. Shi, F. Liu, Y. Song, Progress: targeted therapy, immunotherapy, and new chemotherapy strategies in advanced triple-negative breast cancer, Cancer Manage. Res. 9375–9387 (2020)

  10. A. Marra, D. Trapani, G. Viale, C. Criscitiello, G. Curigliano, Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ. Breast Cancer 6(1), 54 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  11. D. Zhao, C. Hu, Q. Fu, H. Lv, Combined chemotherapy for triple negative breast cancer treatment by paclitaxel and niclosamide nanocrystals loaded thermosensitive hydrogel. Eur. J. Pharm. Sci. 167, 105992 (2021). https://doi.org/10.1016/j.ejps.2021.105992

    Article  CAS  PubMed  Google Scholar 

  12. A.R.T. Bergin, S. Loi, Triple-negative breast cancer: recent treatment advances. F1000Res 8 (2019). https://doi.org/10.12688/f1000research.18888.1

  13. S. Boichuk, P. Dunaev, I. Mustafin, S. Mani, K. Syuzov, E. Valeeva, F. Bikinieva, A. Galembikova, Infigratinib (BGJ 398), a Pan-FGFR Inhibitor, Targets P-Glycoprotein and Increases Chemotherapeutic-Induced Mortality of Multidrug-Resistant Tumor Cells. Biomedicines 10, 3 (2022). https://doi.org/10.3390/biomedicines10030601

    Article  CAS  Google Scholar 

  14. L. Mosca, A. Ilari, F. Fazi, Y.G. Assaraf, G. Colotti, Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug. Resist. Updates 54, 100742 (2021). https://doi.org/10.1016/j.drup.2020.100742

    Article  CAS  Google Scholar 

  15. T. Avril, E. Vauléon, E. Chevet, Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 6(8), e373 (2017). https://doi.org/10.1038/oncsis.2017.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Wang, R.J. Kaufman, Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529(7586), 326–335 (2016). https://doi.org/10.1038/nature17041

    Article  CAS  PubMed  Google Scholar 

  17. M.C. Kopp, N. Larburu, V. Durairaj, C.J. Adams, M.M.U. Ali, UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat. Struct. Mol. Biol. 26(11), 1053–1062 (2019). https://doi.org/10.1038/s41594-019-0324-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C. Hetz, K. Zhang, R.J. Kaufman, Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21(8), 421–438 (2020). https://doi.org/10.1038/s41580-020-0250-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Read, M. Schröder, The unfolded protein response: an overview. Biology 10(5) (2021). https://doi.org/10.3390/biology10050384

  20. S.M. Park, T.I. Kang, J.S. So, Roles of XBP1s in transcriptional regulation of target genes. Biomedicines 9(7) (2021). https://doi.org/10.3390/biomedicines9070791

  21. X. Chen, J.R. Cubillos-Ruiz, Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 21(2), 71–88 (2021). https://doi.org/10.1038/s41568-020-00312-2

    Article  CAS  PubMed  Google Scholar 

  22. P. Walter, D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation. Science (New York, N.Y.) 334(6059), 1081–1086 (2011). https://doi.org/10.1126/science.1209038

    Article  CAS  PubMed  Google Scholar 

  23. Y. **e, C. Liu, Y. Qin, J. Chen, J. Fang, Knockdown of IRE1ɑ suppresses metastatic potential of colon cancer cells through inhibiting FN1-Src/FAK-GTPases signaling. Int. J. Biochem. Cell Biol. 114, 105572 (2019). https://doi.org/10.1016/j.biocel.2019.105572

    Article  CAS  PubMed  Google Scholar 

  24. D. Xu, Z. Liu, M.-X. Liang, Y.-J. Fei, W. Zhang, Y. Wu, J.-H. Tang, Endoplasmic reticulum stress targeted therapy for breast cancer. Cell Commun. Signal. 20(1), 174 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  25. L. Sisinni, M. Pietrafesa, S. Lepore, F. Maddalena, V. Condelli, F. Esposito, M. Landriscina, Endoplasmic reticulum stress and unfolded protein response in breast cancer: the balance between apoptosis and autophagy and its role in drug resistance. Int. J. Mol. Sci. 20(4), 857 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. P. Wang, D. Song, D. Wan, L. Li, W. Mei, X. Li, L. Han, X. Zhu, L. Yang, Y. Cai, R. Zhang, Ginsenoside panaxatriol reverses TNBC paclitaxel resistance by inhibiting the IRAK1/NF-κB and ERK pathways. PeerJ 8, e9281 (2020). https://doi.org/10.7717/peerj.9281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K. Xu, W. Zhu, A. Xu, Z. **ong, D. Zou, H. Zhao, D. Jiao, Y. Qing, M.A. Jamal, H.J. Wei, H.Y. Zhao, Inhibition of FOXO1‑mediated autophagy promotes paclitaxel‑induced apoptosis of MDA‑MB‑231 cells. Mol. Med. Rep. 25(2) (2022). https://doi.org/10.3892/mmr.2022.12588

  28. G. Kim, S.K. Jang, Y.J. Kim, H.O. **, S. Bae, J. Hong, I.C. Park, J.H. Lee, Inhibition of Glutamine Uptake Resensitizes Paclitaxel Resistance in SKOV3-TR Ovarian Cancer Cell via mTORC1/S6K Signaling Pathway. Int. J. Mol. Sci. 23, 15 (2022). https://doi.org/10.3390/ijms23158761

    Article  CAS  Google Scholar 

  29. J.A. Zundell, T. Fukumoto, J. Lin, N. Fatkhudinov, T. Nacarelli, A.V. Kossenkov, Q. Liu, J. Cassel, C.A. Hu, S. Wu, R. Zhang, Targeting the IRE1α/XBP1 endoplasmic reticulum stress response pathway in ARID1A-mutant ovarian cancers. Cancer Res. 81(20), 5325–5335 (2021). https://doi.org/10.1158/0008-5472.Can-21-1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y. Xu, P. Huangyang, Y. Wang, L. Xue, E. Devericks, H.G. Nguyen, X. Yu, J.A. Oses-Prieto, A.L. Burlingame, S. Miglani, et al., ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance. Cell 184(20), 5215–5229.e5217 (2021). https://doi.org/10.1016/j.cell.2021.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M.J.P. Crowley, B. Bhinder, G.J. Markowitz, M. Martin, A. Verma, T.A. Sandoval, C.S. Chae, S. Yomtoubian, Y. Hu, S. Chopra, et al., Tumor-intrinsic IRE1α signaling controls protective immunity in lung cancer. Nat. Commun. 14(1), 120 (2023). https://doi.org/10.1038/s41467-022-35584-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. X. Chen, D. Iliopoulos, Q. Zhang, Q. Tang, M.B. Greenblatt, M. Hatziapostolou, E. Lim, W.L. Tam, M. Ni, Y. Chen, et al., XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508(7494), 103–107 (2014). https://doi.org/10.1038/nature13119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from National Natural Science Foundation of China (82073310, 82373146), ECNU Construction Fund of Innovation and Entrepreneurship Laboratory (44400-20201-532300/021). We thank the Instruments Sharing Platform of School of LifeSciences, East China Normal University.

Author information

Authors and Affiliations

Authors

Contributions

M.W., L.Z., and L.P. designed the experiments. M.W., L.Z., L.P., L.L., S.W. and H.P. performed the experiments. M.W., L.Z., L.P., L.L., S.W., H.P. and Z.Y. performed the data analysis. M.W., M.L. and Z.Y. wrote the manuscript.

Corresponding author

Correspondence to Zhengfang Yi.

Ethics declarations

Animal ethical

All animals mentioned in this article were purchased from the Animal Center of East China Normal University. Animal care and maintenance complied with the guidelines of the Animal Investigation Committee of the Institute of Biomedical Sciences, East China Normal University.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Zhang, L., Pi, L. et al. IRE1α inhibitor enhances paclitaxel sensitivity of triple-negative breast cancer cells. Cell Oncol. (2024). https://doi.org/10.1007/s13402-024-00961-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-024-00961-7

Keywords

Navigation