Log in

Deciphering musculoskeletal artificial intelligence for clinical applications: how do I get started?

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Artificial intelligence (AI) represents a broad category of algorithms for which deep learning is currently the most impactful. When electing to begin the process of building an adequate fundamental knowledge base allowing them to decipher machine learning research and algorithms, clinical musculoskeletal radiologists currently have few options to turn to. In this article, we provide an introduction to the vital terminology to understand, how to make sense of data splits and regularization, an introduction to the statistical analyses used in AI research, a primer on what deep learning can or cannot do, and a brief overview of clinical integration methods. Our goal is to improve the readers’ understanding of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408.

    Article  CAS  Google Scholar 

  2. Hubel DH, Wiesel TN. Effects of monocular deprivation in kittens. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1964;248:492–7.

    Article  CAS  Google Scholar 

  3. Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. Understanding neural networks Through deep visualization. ar**v [csCV]. Published online June 22, 2015. http://arxiv.org/abs/1506.06579

  4. Lee H, Grosse R, Ranganath R, Ng AY. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning. ICML ’09. Association for Computing Machinery; 2009:609–616.

  5. Mutasa S, Sun S, Ha R. Understanding artificial intelligence based radiology studies: what is overfitting? Clin Imaging. 2020;65:96–9.

    Article  Google Scholar 

  6. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition 2009;248–255.

  7. Barbedo JGA. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput Electron Agric. 2018;153:46–53.

    Article  Google Scholar 

  8. Powers DMW. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. ar**v [csLG]. Published online October 11, 2020. http://arxiv.org/abs/2010.16061

  9. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8):861–74. https://doi.org/10.1016/j.patrec.2005.10.010.

    Article  Google Scholar 

  10. Ren M, Yi PH. Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern. Skeletal Radiol. Published online February 12, 2021. https://doi.org/10.1007/s00256-021-03739-2

  11. Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists. Radiographics. 2017;37(7):2113–31.

    Article  Google Scholar 

  12. Mariano VY, Min J, Park J-H, et al. Performance evaluation of object detection algorithms. Object recognition supported by user interaction for service robots. https://doi.org/10.1109/icpr.2002.1048198

  13. Zhang YJ. A survey on evaluation methods for image segmentation. Pattern Recognit. 1996;29(8):1335–46.

    Article  Google Scholar 

  14. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.

    Article  Google Scholar 

  15. Zech J. RSNA 2017: Be skeptical of implausible claims about deep learning. Medium. Published November 30, 2017. Accessed March 15, 2021. https://jrzech.medium.com/rsna-2017-be-skeptical-of-implausible-claims-about-deep-learning-9c7a9beeb0e1

  16. Esteva A, Kuprel B, Novoa RA, et al. Corrigendum: dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;546(7660):686.

    Article  CAS  Google Scholar 

  17. Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging. 2017;30(4):427–41.

    Article  Google Scholar 

  18. Halabi SS, Prevedello LM, Kalpathy-Cramer J, et al. The RSNA pediatric bone age machine learning challenge. Radiology. 2019;290(2):498–503.

    Article  Google Scholar 

  19. Feng R, Badgeley M, Mocco J, Oermann EK. Deep learning guided stroke management: a review of clinical applications. Journal of NeuroInterventional Surgery. 2018;10(4):358–62. https://doi.org/10.1136/neurintsurg-2017-013355.

    Article  PubMed  Google Scholar 

  20. Zheng Q, Shellikeri S, Huang H, Hwang M, Sze RW. Deep learning measurement of leg length discrepancy in children based on radiographs. Radiology. 2020;296(1):152–8.

    Article  Google Scholar 

  21. Mutasa S, Chang PD, Ruzal-Shapiro C, Ayyala R. MABAL: a novel deep-learning architecture for machine-assisted bone age labeling. J Digit Imaging. 2018;31(4):513–9.

    Article  Google Scholar 

  22. Lee JH, Kim KG. Applying deep learning in medical images: the case of bone age estimation. Healthc Inform Res. 2018;24(1):86–92.

    Article  Google Scholar 

  23. Buda M, Wildman-Tobriner B, Hoang JK, et al. Management of thyroid nodules seen on US images: deep learning may match performance of radiologists. Radiology. 2019;292(3):695–701.

    Article  Google Scholar 

  24. Samek W, Wiegand T, Müller K-R. Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. ar**v [csAI]. Published online August 28, 2017. http://arxiv.org/abs/1708.08296

  25. Castelvecchi D. Can we open the black box of AI? Nature News. 2016;538(7623):20.

    Article  CAS  Google Scholar 

  26. Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). ieeexplore.ieee.org; 2018:80–89.

  27. Reyes M, Meier R, Pereira S, et al. On the interpretability of artificial intelligence in radiology: challenges and opportunities. Radiol Artif Intell. 2020;2(3):e190043.

    Article  Google Scholar 

  28. Wu C, Gales MJF, Ragni A, Karanasou P, Sim KC. Improving interpretability and regularization in deep learning. IEEE/ACM Trans Audio Speech Language Process. 2018;26(2):256–65.

    Article  Google Scholar 

  29. lukeoakdenrayner. Ten controversial opinions about medical AI. Published May 4, 2019. Accessed March 4, 2021. https://lukeoakdenrayner.wordpress.com/2019/05/04/ten-controversial-opinions-about-medical-ai/

  30. Harvey HB, Gowda V. How the FDA regulates AI. Acad Radiol. 2020;27(1):58–61.

    Article  Google Scholar 

  31. Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3:118.

    Article  Google Scholar 

  32. Allen B. The role of the FDA in ensuring the safety and efficacy of artificial intelligence software and devices. J Am Coll Radiol. 2019;16(2):208–10.

    Article  Google Scholar 

  33. Tang A, Tam R, Cadrin-Chênevert A, et al. Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology. Can Assoc Radiol J. 2018;69(2):120–35.

    Article  Google Scholar 

  34. Liang W, Yao J, Chen A, et al. Early triage of critically ill COVID-19 patients using deep learning. Nat Commun. 2020;11(1):3543.

    Article  CAS  Google Scholar 

  35. Zbontar J, Knoll F, Sriram A, et al. fastMRI: an open dataset and benchmarks for accelerated MRI. ar**v [csCV]. Published online November 21, 2018. http://arxiv.org/abs/1811.08839

  36. Yala A, Schuster T, Miles R, Barzilay R, Lehman C. A Deep learning model to triage screening mammograms: a simulation study. Radiology. 2019;293(1):38–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simukayi Mutasa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutasa, S., Yi, P.H. Deciphering musculoskeletal artificial intelligence for clinical applications: how do I get started?. Skeletal Radiol 51, 271–278 (2022). https://doi.org/10.1007/s00256-021-03850-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03850-4

Keywords

Navigation