Log in

Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biological soil disinfestation (BSD) or reductive soil disinfestation (RSD) is an environmental biotechnology to eliminate soil-borne plant pathogens based on functions of indigenous microbes. BSD treatments using different types of organic materials have been reported to effectively control a wide range of plant pathogens. Various studies have shown that development of reducing or anoxic conditions in soil is the most important aspect for effective BSD treatments. Substances such as organic acids, FeS, or phenolic compounds generated in the treated soil have been suggested to contribute to inactivation of pathogens. Additionally, anaerobic bacteria grown in the BSD-treated soil may produce and release enzymes with anti-pathogenic activities in soil. Clone library analyses as well as a next-generation sequence analysis based on 16S rRNA genes have revealed prosperity of obligate anaerobic bacteria from the class Clostridia in differently treated BSD soils. Two anaerobic bacterial strains isolated from BSD-treated soil samples and identified as Clostridium beijerinckii were found to decompose major cell wall polysaccharides of ascomycetous fungi, chitosan and β-1,3-glucan. C. beijerinckii is a species most frequently detected in the clone library analyses for various BSD-treated soils as a closely related species. The two anaerobic isolates severely degraded mycelial cells of the Fusarium pathogen of spinach wilt disease during anaerobic co-incubation of each isolate and the Fusarium pathogen. These reports suggest that antifungal enzymes produced by predominant anaerobic bacteria grown in the BSD-treated soil play important roles to control soil-borne fungal pathogens. Further studies using different bacterial isolates from BSD-treated soils are expected to know their anti-pathogenic abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akasaka H, Izawa T, Ueki K, Ueki A (2003) Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43:149–161

    Article  PubMed  CAS  Google Scholar 

  • Aktuganov GE, Galimzyanova NF, Melent’ev AI, Kuz’mina LY (2007) Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls. Microbiology 76:471–479

    Article  PubMed  CAS  Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soil borne diseases with residue management and organic amendments. Soil Till Res 72:169–180

    Article  Google Scholar 

  • Barko PC, McMichael MA, Swanson KS, Williams DA (2018) The gastrointestinal microbiome: a review. J Vet Intern Med 32:9–25

    Article  PubMed  CAS  Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soil-borne plant pathogens by incorporating fresh organic amendments followed by tar**. Phytopathology 90:253–259

    Article  PubMed  CAS  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Muramoto J, Shennan C, McCollum TG, Rosskopf EN (2012) Impact of anaerobic soil disinfestation combined with soil solarization on plant-parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot 39:33–40

    Article  CAS  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Albano JP, McCollum TG, Muramoto J, Shennan C, Rosskopf EN (2014) Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. Plant Soil 378:365–381

    Article  CAS  Google Scholar 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    Article  PubMed  CAS  Google Scholar 

  • Cota IE, Troncoso-Rojas R, Sotelo-Mundo R, Sánches-Estrada A, Tiznado-Hernández ME (2007) Chitinase and β-1,3-glucanase enzymatic activities in response to infection by Alternaria alternata evaluated in two stages of development in different tomato fruit varieties. Sci Hortic 112:42–50

    Article  CAS  Google Scholar 

  • Di Gioia F, Ozores-Hampton M, Zhao X, Thomas J, Wilson P, Li Z, Hong J, Albano J, Swisher M, Rosskopf E (2017) Anaerobic soil disinfestation impact on soil nutrients dynamics and nitrous oxide emissions in fresh-market tomato. Agric Ecosyst Environ 240:194–205

    Article  CAS  Google Scholar 

  • Dvortsov IA, Lunina NA, Chekanovskaya LA, Schwarz WH, Zverlov VV, Velikodvorskaya GA (2009) Carbohydrate-binding properties of a separately folding protein module from β-1,3-glucanase Lic16A of Clostridium thermocellum. Microbiology 155:2442–2449

    Article  PubMed  CAS  Google Scholar 

  • Egea C, Dickinson MJ, Candela M, Candela ME (1999) β-1,3-Glucanase isoenzymes and genes in resistant and susceptible pepper (Capsicum annuum) cultivars infected with Phytophthora capsici. Physiol Plant 107:312–318

    Article  CAS  Google Scholar 

  • Evvyernie D, Yamazaki S, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K (2000) Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. J Biosci Bioeng 89:596–601

    Article  PubMed  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and modeling of anaerobic digestion process. In: Biomethanation I (ed) Ahring BK. Springer-Verlag, Berlin, pp 57–93

    Google Scholar 

  • Goud JKC, Termorshuizen AJ, Blok WJ, van Bruggen AHC (2004) Long-term effect of biological soil disinfestation on Verticillium wilt. Plant Dis 88:688–694

    Article  Google Scholar 

  • Großkopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989

    PubMed Central  Google Scholar 

  • Henckel T, Friedrich M, Conrad R (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hengstmann D, Chin K-J, Janssen PH, Liesack W (1999) Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl Environ Microbiol 65:5050–5058

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hillman ETLH, Yao T, Nakatsu CH (2017) Microbial ecology along the gastrointestinal tract. Microbes Environ 32:300–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Holdeman LV, Cato EP, Moore WEC (1977) Anaerobe laboratory manual, 4th edn. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Huang X, Liu L, Wen T, Zhang J, Wang F, Cai Z (2016) Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl Microbiol Biotechnol 100:5581–5593

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Cui H, Yang L, Lan T, Zhang J, Cai Z (2017) The microbial changes during the biological control of cucumber dam**-off disease using biocontrol agents and reductive soil disinfestation. BioControl 62:97–109

    Article  CAS  Google Scholar 

  • Ibekwe AM, Papiernik SK, Gan J, Yates SR, Yang CH, Crowley DE (2001) Impact of fumigants on soil microbial communities. Appl Environ Microbiol 67:3245–3257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibekwe AM, Papiernik SK, Yang CH (2004) Enrichment and molecular characterization of chloropicrin and metam-sodium-degrading microbial communities. Appl Microbiol Biotechnol 66:325–332

    Article  PubMed  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katan J (1981) Solar heating (solarization) of soil for control of soil-borne pests. Annu Rev Phytopathol 19:211–236

    Article  Google Scholar 

  • Katan J (2000) Physical and cultural methods for the management of soil-borne pathogens. Crop Prot 19:25–31

    Google Scholar 

  • Katan J (2017) Disease caused by soilborne pathogens: biology, management and challenges. J Plant Pathol 99:305–315

    Google Scholar 

  • Kirkegaard JA, Wong PTW, Desmarchelier JM (1996) In-vitro suppression of fungal root pathogens of cereals by Brassica tissues. Plant Pathol 45:593–603

    Article  Google Scholar 

  • Kubo C, Ushio S, Katase M, Takeuchi T (2005) Analysis of factors involved in sterilization effect by soil reduction. Jpn J Phytopathol 71:281–282

    Article  Google Scholar 

  • Kurakake M, Yamanouchi Y, Kinohara K, Moriyama S (2013) Enzymatic properties of β-1,3-glucanase from Streptomyces sp Mo. J Food Sci 78:C502–C506

    Article  PubMed  CAS  Google Scholar 

  • Larkin RP, Griffin TS (2007) Control of soil-borne potato diseases using Brassica green manures. Crop Prot 26:1067–1077

    Article  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawson PA, Rainey FA (2016) Proposal to restrict the genus Clostridium (Prazmowski) to Clostridium butyricum and related species. Int J Syst Evol Microbiol 66:1009–1016

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Kong J, Cui H, Zhang J, Wang F, Cai Z, Huang X (2016) Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biol Control 101:103–113

    Article  CAS  Google Scholar 

  • Ludwig W, Schleifer K-H, Whitman WB (2009) Class III. Erysipelotricha class. nov. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, pp 1296–1317

    Google Scholar 

  • Macfarlane J, Macfarlane GT (1995) Proteolysis and amino acid fermentation. In: Gibson GR, Macfarlane GT (eds) Human colonic bacteria. CRC Press, New York, pp 75–100

    Google Scholar 

  • Mao L, Jiang H, Zhang L, Zhang Y, Sial MU, Yu H, Cao A (2017) Replacing methyl bromide with a combination of 1,3-dichloropropene and metam sodium for cucumber production in China. PLoS One 12:e0188137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchandin H, Teyssier C, Campos J, Jean-Pierre H, Roger F, Gay B, Carlier J-P, Jumas-Bilak E (2010) Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. Int J Syst Evol Microbiol 60:1271–1279

    Article  PubMed  CAS  Google Scholar 

  • Mattner SW, Porter IJ, Gounder RK, Shanks AL, Wren DJ, Allen D (2008) Factors that impact on the ability of biofumigants to suppress fungal pathogens and weeds of strawberry. Crop Prot 27:1165–1173

    Article  CAS  Google Scholar 

  • McCarty DG, Inwood SEE, Ownley BH, Sams CE, Wszelaki AL, Butler DM (2014) Field evaluation of carbon sources for anaerobic soil disinfestation in tomato and bell pepper production in Tennessee. Hortscience 49:272–280

    Google Scholar 

  • Meng T, Yang Y, Cai Z, Ma Y (2018) The control of Fusarium oxysporum in soil treated with organic material under anaerobic condition is affected by liming and sulfate content. Biol Fertile Soils 54:295–307

    Article  Google Scholar 

  • Messiha NAS, van Diepeningen AD, Wenneker M, van Beuningen AR, Janse JD, Coenen TGC, Termorshuizen AJ, van Bruggen AHC, Blok WJ (2007) Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol 117:403–415

    Article  Google Scholar 

  • Mojtahedi H, Santo GS, Hang AN, Wilson JH (1991) Suppression of root-knot nematode populations with selected rapeseed cultivars as green manure. J Nematol 23:170–174

    PubMed  PubMed Central  CAS  Google Scholar 

  • Momma N, Yamamoto K, Simandi P, Shishido M (2006) Role of organic acids in the mechanisms of biological soil disinfestation (BSD). J Gen Plant Pathol 72:247–252

    Article  CAS  Google Scholar 

  • Momma N, Momma M, Kobara Y (2010) Biological soil disinfestation using ethanol: effect on Fusarium oxysporum f. sp. lycopersici and soil microorganisms. J Gen Plant Pathol 76:336–344

    Article  CAS  Google Scholar 

  • Momma N, Kobara Y, Momma M (2011) Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation. J Gen Plant Pathol 77:331–335

    Article  CAS  Google Scholar 

  • Momma N, Kobara Y, Uematsu S, Kita N, Shinmura A (2013) Development of biological soil disinfestations in Japan. Appl Microbiol Biotechnol 97:3801–3809

    Article  PubMed  CAS  Google Scholar 

  • Mowlick S, Hirota K, Takehara T, Kaku N, Ueki K, Ueki A (2012) Development of anaerobic bacterial community consisted of diverse clostridial species during biological soil disinfestations amended with plant biomass. Soil Sci Plant Nutr 58:273–287

    Article  Google Scholar 

  • Mowlick S, Inoue T, Takehara T, Kaku N, Ueki K, Ueki A (2013a) Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment. AMB Express 3:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mowlick S, Takehara T, Kaku N, Ueki K, Ueki A (2013b) Proliferation of diversified clostridial species during biological soil disinfestation incorporated with plant biomass under various conditions. Appl Microbiol Biotechnol 97:8365–8379

    Article  PubMed  CAS  Google Scholar 

  • Mowlick S, Yasukawa H, Inoue T, Takehara T, Kaku N, Ueki K, Ueki A (2013c) Suppression of spinach wilt disease by biological soil disinfestation incorporated with Brassica juncea plants in association with changes in soil bacterial communities. Crop Prot 54:185–193

    Article  Google Scholar 

  • Mowlick S, Inoue T, Takehara T, Tonouchi A, Kaku N, Ueki K, Ueki A (2014) Usefulness of Japanese-radish residue in biological soil disinfestation to suppress spinach wilt disease accompanying with proliferation of soil bacteria in the Firmicutes. Crop Prot 61:64–73

    Article  Google Scholar 

  • Muramoto J, Shennan C, Baird G, Zavatta M, Koike ST, Bolda MP, Daugovish O, Dara SK, Klonsky K, Mazzola M (2014) Optimizing anaerobic soil disinfestation for California strawberries. Acta Hortic 1044:215–220

    Article  Google Scholar 

  • Nishiyama T, Ueki A, Kaku N, Watanabe K, Ueki K (2009) Bacteroides graminisolvens sp. nov., a novel, xylanolytic anaerobic rods isolated from a methanogenic reactor of cattle waste. Int J Syst Evol Microbiol 59:1901–1907

    Article  PubMed  CAS  Google Scholar 

  • Peters V, Conrad R (1996) Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biol Biochem 28:371–382

    Article  CAS  Google Scholar 

  • Prasanna R, Nain L, Tripathi R, Gupta V, Chaudhary V, Middha S, Joshi M, Ancha R, Kaushik BD (2008) Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria—possible role of hydrolytic enzymes. J Basic Microbiol 48:186–194

    Article  PubMed  CAS  Google Scholar 

  • Prather MJ, McElroy MB, Wofsy SC (1984) Reductions in ozone at high concentrations of stratospheric halogens. Nature 312:227–231

    Article  PubMed  CAS  Google Scholar 

  • Rainey FA, Hollen BJ, Small A (2009) Genus I. Clostridium Prazmowski 1880, 23AL. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, pp 736–828

    Google Scholar 

  • Ristaino JB, Thomas W (1997) Agriculture, methyl bromide, and the ozone hole: can we fill the gaps. Plant Dis 81:954–975

    Article  Google Scholar 

  • Ruiz-Herrera J, Ortiz-Castellanos L (2010) Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res 10:225–243

    Article  PubMed  CAS  Google Scholar 

  • Sandaa RA, Torsvik V, Enger O, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  PubMed  CAS  Google Scholar 

  • Sarwar M, Kirkegaard JA (1998) Biofumigation potential of brassicas. Plant Soil 201:91–101

    Article  CAS  Google Scholar 

  • Satoh A, Watanabe M, Ueki A, Ueki K (2002) Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of rice plants cultivated on a paddy field. Anaerobe 8:233–246

    Article  CAS  Google Scholar 

  • Schink B (1999a) Habitat of prokaryotes. In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of the prokaryotes. Blackwell Science, Stuttgart, pp 763–803

    Google Scholar 

  • Schink B (1999b) Global biogeochemical cycles. In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of the prokaryotes. Blackwell Science, Stuttgart, pp 804–811

    Google Scholar 

  • Schoffelmeer EAM, Klis FM, Sietsma JH, Cornelissen BJC (1999) The cell wall of Fusarium oxysporum. Fungal Genet Biol 27:275–282

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi Y, Kamagata Y (2004) Microbial community structure and functions in fermentation technology for wastewater treatment. In: Nakano MM, Zuber P (eds) Strict and facultative anaerobes: medical and environmental aspects. Horizon Bioscience, Norfolk, pp 361–383

    Google Scholar 

  • Serrano-Pérez P, Rosskopf E, De Santiago A, Rodríguez-Molina MC (2017) Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper. Sci Hort 215:38–48

    Article  Google Scholar 

  • Stackebrandt E (2004) The phylogeny and classification of anaerobic bacteria. In: Nakano MM, Zuber P (eds) Strict and facultative anaerobes: medical and environmental aspects. Horizon Bioscience, Norfolk, pp 1–25

    Google Scholar 

  • Stover RH (1979) Flooding of soil for disease control. In: Mulder D (ed) Soil disinfestation. Elsevier Scientific Company, Amsterdam, pp 19–28

    Chapter  Google Scholar 

  • Strauss SL, Kluepfel DA (2015) Anaerobic soil disinfestation: a chemical-independent approach to pre-plant control of plant pathogens. J Integ Agric 14:2309–2318

    Article  CAS  Google Scholar 

  • Subbarao KV (2002) Methyl bromide alternatives-meeting the deadline. Phytopathology 92:1334–1343

    Article  PubMed  Google Scholar 

  • Sugawara Y, Ueki A, Abe K, Kaku N, Watanabe K, Ueki K (2011) Propioniciclava tarda gen. nov., sp. nov., isolated from a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 61:2298–2303

    Article  PubMed  CAS  Google Scholar 

  • Takehara T, Kuniyasu K, Mori M, Hagiwara H (2003) Use of a nitrate-nonutilizing mutant and selective media to examine population dynamics of Fusarium oxysporum f. sp. spinaciae in soil. Phytopathology 93:1173–1181

    Article  PubMed  Google Scholar 

  • Tanaka S, Kobayashi T, Iwasaki K, Yamane S, Maeda K, Sakurai K (2003) Properties and metabolic diversity of microbial communities in soils treated with steam sterilization compared with methyl bromide and chloropicrin fumigations. Soil Sci Plant Nutr 49:603–610

    Article  CAS  Google Scholar 

  • Trosvik P, de Muinck EJ (2015) Ecology of bacteria in the human gastrointestinal tract—identification of keystone and foundation taxa. Microbiome 3:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueki A, Akasaka H, Suzuki D, Ueki K (2006) Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56:39–44

    Article  PubMed  CAS  Google Scholar 

  • Ueki A, Akasaka H, Satoh A, Suzuki D, Ueki K (2007) Prevotella paludivivens sp. nov., a novel strictly-anaerobic, Gram-negative, hemicellulose-decomposing bacterium isolated from plant residue and rice roots in irrigated rice-field soil. Int J Syst Evol Microbiol 57:1803–1809

  • Ueki A, Abe K, Kaku N, Watanabe K, Ueki K (2008) Bacteroides propionicifaciens sp. nov., isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 58:346–352

    Article  PubMed  CAS  Google Scholar 

  • Ueki A, Takehara T, Ishioka G, Kaku K, Ueki K (2017) Degradation of the fungal cell wall by clostridial strains isolated from soil subjected to biological soil disinfestation and biocontrol of Fusarium wilt disease of spinach. Appl Microbiol Biotechnol 101:8267–8277

    Article  PubMed  CAS  Google Scholar 

  • Větrovský T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:e57923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zehnder AJB (ed) (1988) Biology of anaerobic microorganisms. Wiley Interscience, New York

    Google Scholar 

Download references

Acknowledgements

We would like to thank T. Takehara and G. Ishioka (NARO Western Region Agricultural Research Center) for their fruitful discussions. We greatly appreciate S. Mowlick who worked with us in our project.

Funding

This study was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Science and technology research promotion program for agriculture, forestry, fisheries and food industry, No. 27016C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko Ueki.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

This article does not contain any studies concerned with experimentation on human or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueki, A., Kaku, N. & Ueki, K. Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture. Appl Microbiol Biotechnol 102, 6309–6318 (2018). https://doi.org/10.1007/s00253-018-9119-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9119-x

Keywords

Navigation