Log in

Wilson spaces, snaith constructions, and elliptic orientations

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We construct a canonical family of even periodic \(\mathbb{E}_{\infty}\)-ring spectra, with exactly one member of the family for every prime \(p\) and chromatic height \(n\). At height 1 our construction is due to Snaith, who built complex \(K\)-theory from \(\mathbb{CP}^{\infty}\). At height 2 we replace \(\mathbb{CP}^{\infty}\) with a \(p\)-local retract of \(\mathrm{BU} \langle 6 \rangle \), producing a new theory that orients elliptic, but not generic, height 2 Morava \(E\)-theories.

In general our construction exhibits a kind of redshift, whereby \(\mathrm{BP}\langle n-1 \rangle \) is used to produce a height \(n\) theory. A familiar sequence of Bocksteins, studied by Tamanoi, Ravenel, Wilson, and Yagita, relates the \(K(n)\)-localization of our height \(n\) ring to work of Peterson and Westerland building \(E_{n}^{hS\mathbb{G}^{\pm}}\) from \(\mathrm{K}(\mathbb{Z},n+1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.F., Priddy, S.B.: Uniqueness of \(B{\mathrm{SO}}\). Math. Proc. Camb. Philos. Soc. 80(3), 475–509 (1976)

    Article  Google Scholar 

  2. Ando, M., Strickland, N.P.: Weil pairings and Morava \(K\)-theory. Topology 40(1), 127–156 (2001)

    Article  MathSciNet  Google Scholar 

  3. Ando, M., Hopkins, M.J., Strickland, N.P.: Elliptic spectra, the Witten genus and the theorem of the cube. Invent. Math. 146(3), 595–687 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ando, M., Hopkins, M.J., Rezk, C.: Multiplicative orientations of ko-theory and of the spectrum of topological modular forms (2010). Preprint

  5. Ando, M., Blumberg, A.J., Gepner, D., Hopkins, M.J., Rezk, C.: An \(\infty \)-categorical approach to \(R\)-line bundles, \(R\)-module Thom spectra, and twisted \(R\)-homology. J. Topol. 7(3), 869–893 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ando, M., Blumberg, A.J., Gepner, D., Hopkins, M.J., Rezk, C.: Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory. J. Topol. 7(4), 1077–1117 (2014)

    Article  MathSciNet  Google Scholar 

  7. Angeltveit, V., Lind, J.A.: Uniqueness of \(BP \langle n\rangle \). J. Homotopy Relat. Struct. 12(1), 17–30 (2017)

    Article  MathSciNet  Google Scholar 

  8. Behrens, M., Lawson, T.: Topological automorphic forms. Mem. Amer. Math. Soc., 204(958):xxiv+141, (2010)

  9. Bhattacharya, P., Kitchloo, N.: The \(p\)-local stable Adams conjecture and higher associative structures on Moore spectra (2018). ar**v:1803.11014. Preprint

  10. Breen, L.: Fonctions thêta et théorème du cube. Lecture Notes in Mathematics, vol. 980. Springer, Berlin (1983)

    Google Scholar 

  11. Buchstaber, V., Lazarev, A.: Dieudonné modules and \(p\)-divisible groups associated with Morava \(K\)-theory of Eilenberg-Mac Lane spaces. Algebraic Geom. Topol. 7, 529–564 (2007)

    Article  MathSciNet  Google Scholar 

  12. Carmeli, S., Schlank, T.M., Yanovski, L.: Chromatic cyclotomic extensions (2021). ar**v:2103.02471

  13. Chadwick, S.G., Mandell, M.A.: \(E_{n}\) genera. Geom. Topol. 19(6), 3193–3232 (2015)

    Article  MathSciNet  Google Scholar 

  14. Demazure, M.: Lectures on \(p\)-Divisible Groups. Lecture Notes in Mathematics, vol. 302. Springer, Berlin (1986). Reprint of the 1972 original

    Google Scholar 

  15. Douglas, C.L., Francis, J., Henriques, A.G., Hill, M.A. (eds.): Topological Modular Forms. Mathematical Surveys and Monographs, vol. 201. Am. Math. Soc., Providence (2014)

    Google Scholar 

  16. Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P.: Rings, Modules, and Algebras in Stable Homotopy Theory. Mathematical Surveys and Monographs, vol. 47. Am. Math. Soc., Providence (1997). With an appendix by M. Cole

    Google Scholar 

  17. Friedlander, E.M.: The infinite loop Adams conjecture via classification theorems for ℱ-spaces. Math. Proc. Camb. Philos. Soc. 87(1), 109–150 (1980)

    Article  MathSciNet  Google Scholar 

  18. Gepner, D., Snaith, V.: On the motivic spectra representing algebraic cobordism and algebraic \(K\)-theory. Doc. Math. 14, 359–396 (2009)

    Article  MathSciNet  Google Scholar 

  19. Goerss, P.G., Hopkins, M.J.: Moduli spaces of commutative ring spectra. In: Structured Ring Spectra. London Math. Soc. Lecture Note Ser., vol. 315, pp. 151–200. Cambridge University Press, Cambridge (2004)

    Chapter  Google Scholar 

  20. Grieve, N.: On cubic torsors, biextensions, and Severi-Brauer varieties over Abelian varieties (2018). ar**v:1807.01663. Preprint

  21. Hahn, J.: On the Bousfield classes of \({H}_{\infty}\)-ring spectra (2016). ar**v:1612.04386. Preprint

  22. Hahn, J., Yuan, A.: Exotic Multiplications on Periodic Complex Bordism (2019). ar**v:1905.00072. Preprint

  23. Heuts, G.: Lie algebras and \(v_{n}\)-periodic spaces (2018). ar**v:1803.06325. Preprint

  24. Hopkins, M.J., Hunton, J.R.: On the structure of spaces representing a Landweber exact cohomology theory. Topology 34(1), 29–36 (1995)

    Article  MathSciNet  Google Scholar 

  25. Hopkins, M., Lurie, J.: Ambidexterity in \(K(n)\)-Local Stable Homotopy Theory (2013). Preprint

  26. Hopkins, M.J., Ravenel, D.C.: Suspension spectra are harmonic. Bol. Soc. Mat. Mexicana (2) 37(1–2), 271–279 (1992)

    MathSciNet  Google Scholar 

  27. Hopkins, M.J., Mahowald, M., Sadofsky, H.: Constructions of elements in Picard groups. In: Topology and Representation Theory, Evanston, IL, 1992. Contemp. Math., vol. 158, pp. 89–126. Am. Math. Soc., Providence (1994)

    Chapter  Google Scholar 

  28. Hovey, M., Sadofsky, H.: Invertible spectra in the \(E(n)\)-local stable homotopy category. J. Lond. Math. Soc. (2) 60(1), 284–302 (1999)

    Article  MathSciNet  Google Scholar 

  29. Hovey, M., Strickland, N.P.: Morava \(K\)-theories and localisation. Mem. Amer. Math. Soc., 139(666): viii+100 (1999)

  30. Kuhn, N.J.: Morava \(K\)-theories and infinite loop spaces. In: Algebraic Topology, Arcata, CA, 1986. Lecture Notes in Math., vol. 1370, pp. 243–257. Springer, Berlin (1989)

    Chapter  Google Scholar 

  31. Kuhn, N.J.: A guide to telescopic functors. Homol. Homotopy Appl. 10(3), 291–319 (2008)

    Article  MathSciNet  Google Scholar 

  32. Lurie, J.: Elliptic Cohomology II: Orientations (2018). Preprint

  33. Mathew, A., Naumann, N., Noel, J.: On a nilpotence conjecture of J.P. May. J. Topol. 8(4), 917–932 (2015)

    Article  MathSciNet  Google Scholar 

  34. Mumford, D.: Bi-extensions of formal groups. In: Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), pp. 307–322. Oxford Univ. Press, London (1969)

    Google Scholar 

  35. Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Published for the Tata Institute of Fundamental Research, Bombay, Oxford University Press, London (1970)

    Google Scholar 

  36. Peterson, E.: Coalgebraic curve spectra and spectral jet spaces (2019). ar**v:1904.10849. Preprint

  37. Pstragowski, P., VanKoughnett, P.: Abstract Goerss-Hopkins Theory (2019). ar**v:1904.08881. Preprint

  38. Ravenel, D.C.: Complex Cobordism and Stable Homotopy Groups of Spheres. Am. Math. Soc., Providence (2003)

    Book  Google Scholar 

  39. Ravenel, D.C., Wilson, W.S.: The Hopf ring for complex cobordism. J. Pure Appl. Algebra 9(2–3), 241–280 (1977)

    Article  MathSciNet  Google Scholar 

  40. Ravenel, D.C., Wilson, W.S.: The Morava \(K\)-theories of Eilenberg-Maclane spaces and the Conner-Floyd conjecture. Am. J. Math. 102(4), 691–748 (1980)

    Article  Google Scholar 

  41. Ravenel, D.C., Stephen Wilson, W., Yagita, N.: Brown-Peterson cohomology from Morava \(K\)-theory. K-Theory 15(2), 147–199 (1998)

    Article  MathSciNet  Google Scholar 

  42. Rezk, C.: Notes on the Hopkins-Miller theorem. In: Homotopy Theory via Algebraic Geometry and Group Representations, Evanston, IL, 1997. Contemp. Math., vol. 220, pp. 313–366. Am. Math. Soc., Providence (1998)

    Chapter  Google Scholar 

  43. Sati, H., Westerland, C.: Twisted Morava K-theory and E-theory. J. Topol. 8(4), 887–916 (2015)

    Article  MathSciNet  Google Scholar 

  44. Snaith, V.: Localized stable homotopy of some classifying spaces. Math. Proc. Camb. Philos. Soc. 89(2), 325–330 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  45. Tamanoi, H.: The image of the BP Thom map for Eilenberg-Mac Lane spaces. Trans. Am. Math. Soc. 349(3), 1209–1237 (1997)

    Article  MathSciNet  Google Scholar 

  46. Westerland, C.: A higher chromatic analogue of the image of \(J\). Geom. Topol. 21(2), 1033–1093 (2017)

    Article  MathSciNet  Google Scholar 

  47. Wilson, W.S.: The \(\Omega \)-spectrum for Brown-Peterson cohomology. II. Am. J. Math. 97, 101–123 (1975)

    Article  MathSciNet  Google Scholar 

  48. Wilson, D.: Orientations and topological modular forms with level structure (2015). ar**v:1507.05116. Preprint

Download references

Acknowledgements

We thank Craig Westerland for some very enlightening discussions, particularly regarding Sects. 5 & 6. We also owe thanks to Eric Peterson, Piotr Pstrągowski, Doug Ravenel, Andrew Senger, and Steve Wilson, and to the anonymous referee for numerous clarifying and enlightening remarks. Most of all we thank Mike Hopkins, Jacob Lurie, and Haynes Miller, who served as the three authors’ three PhD advisors and endured countless conversations about this work over the last several years. Through the course of the work, the second author was supported by NSF Grant DMS-1803273, and the third author by NSF Grant DGE-1122374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Yuan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatham, H., Hahn, J. & Yuan, A. Wilson spaces, snaith constructions, and elliptic orientations. Invent. math. 236, 165–217 (2024). https://doi.org/10.1007/s00222-024-01239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-024-01239-3

Navigation