Log in

Spectral aspect subconvex bounds for \(U_{n+1} \times U_n\)

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let \((\pi ,\sigma )\) traverse a sequence of pairs of cuspidal automorphic representations of a unitary Gan–Gross–Prasad pair \((U_{n+1},U_n)\) over a number field, with \(U_n\) anisotropic. We assume that at some distinguished archimedean place, the pair stays away from the conductor drop** locus, while at every other place, the pair has bounded ramification and satisfies certain local conditions (in particular, temperedness). We prove that the subconvex bound

$$\begin{aligned} L(\pi \times \sigma ,1/2) \ll C(\pi \times \sigma )^{1/4 - \delta } \end{aligned}$$

holds for any fixed

$$\begin{aligned} \delta < \frac{1}{8 n^5 + 28 n^4 + 42 n^3 + 36 n^2 + 14 n}. \end{aligned}$$

Among other ingredients, the proof employs a refinement of the microlocal calculus for Lie group representations developed with A. Venkatesh and an observation of S. Marshall concerning the geometric side of the relative trace formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. These difficulties have since been addressed in the preprint [45].

  2. This convention differs from that in [46], where \({{\,\textrm{Op}\,}}\) refers to the “unscaled” operator assignment, i.e., the case \({\text {h}}= 1\). We refer here to the latter more verbosely as \({{\,\textrm{Op}\,}}_{1}\).

  3. The space \({\underline{S}}^m\) was denoted in [46, Section 4.3] by \(S^m\). We do not adopt the latter notation here.

  4. The space \({\underline{S}}^m_\delta \) was denoted “\(S^m_{\delta }\)” in [46, Section 4.4] The latter notation is used differently here.

  5. The notation here differs from that in [46, Section 3] There, we used “\(\Psi ^m\)” in place of \({\underline{\Psi }}^m\) and “\(\Psi ^m_\delta \)” for the space of \({\text {h}}\)-dependent operators whose norms are bounded in the indicated manner. The class \(\Psi ^m_\delta \) defined here plays a similar role. The relationship between these definitions is as described in the proof of Theorem 9.5.

  6. Some readers have told us that they found the “argument” of [46, Section 17.3] insufficiently detailed, so we elaborate upon the key step here. Let F be a field of characteristic zero with algebraic closure \({\bar{F}}\). Let G be an algebraic group that acts on a variety X, with G, X and the action all defined over F. Suppose that the action of \(G({\bar{F}})\) on \(X({\bar{F}})\) is simply-transitive and that X(F) is nonempty. Then the action of G(F) on X(F) is likewise simply-transitive. In verifying this, the main step is to check that if \(g \in G({\bar{F}})\) and \(x_0 \in X(F)\) satisfy \(g x_0 \in X(F)\), then in fact \(g \in G(F)\). It is enough to check that g is fixed by every element of \({{\,\textrm{Gal}\,}}({\bar{F}}/F)\). Since the action of \(G({\bar{F}})\) on \(X({\bar{F}})\) is free and defined over F, it is enough to check the same for \(g x_0\), which follows from our hypothesis that \(g x_0 \in X(F)\).

References

  1. Aggarwal, K.: A new subconvex bound for \({{\rm GL}}(3)\)\(L\)-functions in the \(t\)-aspect. ar**v:1903.09638 (2019)

  2. Andrianov, A.N.: Spherical functions for \({\rm GL}_{n}\) over local fields, and the summation of Hecke series. Mat. Sb. 83(125), 429–451 (1970)

    Article  MathSciNet  Google Scholar 

  3. Baruch, E.M., Mao, Z.: Bessel identities in the Waldspurger correspondence over the real numbers. Israel J. Math. 145, 1–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, J., Reznikov, A.: Subconvexity bounds for triple \(L\)-functions and representation theory. Ann. Math. 172(3), 1679–1718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beuzart-Plessis, R.: A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case. Ar**v e-prints (2015)

  6. Beuzart-Plessis, R.: Comparison of local spherical characters and the Ichino-Ikeda conjecture for unitary groups. Ar**v e-prints (2016)

  7. Beuzart-Plessis, R.: Plancherel formula for \({{\rm GL}}_n(F)\backslash \rm GL_n(E)\) and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups. ar**v:1812.00047 (2018)

  8. Beuzart-Plessis, R., Chaudouard, P.H., Zydor, M.: The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case. ar**v:2007.05601 (2020)

  9. Beuzart-Plessis, R., Liu, Y., Zhang, W., Zhu, X.: Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture. ar**v:1912.07169 (2019)

  10. Blomer, V., Buttcane, J.: On the subconvexity problem for \(L\)-functions on \({{\rm GL}}(3)\). Ann. Sci. Éc. Norm. Supér. 53(6), 1441–1500 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blomer, V.: Applications of the Kuznetsov formula on \(GL(3)\). Invent. Math. 194(3), 673–729 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blomer, V., Buttcane, J.: Subconvexity for \(L\)-functions of non-spherical cusp forms on \({\rm GL}(3)\). Acta Arith. 192(1), 31–62 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blomer, V., Khan, R., Young, M.: Distribution of mass of holomorphic cusp forms. Duke Math. J. 162(14), 2609–2644 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Blomer, V., Maga, P.: The sup-norm problem for PGL(4). Int. Math. Res. Not. IMRN 14, 5311–5332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Blomer, V., Maga, P.: Subconvexity for sup-norms of cusp forms on \({\rm PGL}({\rm n})\). Selecta Math. 22(3), 1269–1287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buttcane, J.: On sums of \(SL(3,{\mathbb{Z} })\) Kloosterman sums. Ramanujan J. 32(3), 371–419 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Buttcane, J.: The spectral Kuznetsov formula on \(SL(3)\). Trans. Am. Math. Soc. 368(9), 6683–6714 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duke, W., Friedlander, J.B., Iwaniec, H.: The subconvexity problem for Artin \(L\)-functions. Invent. Math. 149(3), 489–577 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harris, R.: Neal: the refined Gross-Prasad conjecture for unitary groups. Int. Math. Res. Not. IMRN 2, 303–389 (2014)

    Article  MATH  Google Scholar 

  20. Holowinsky, R., Nelson, P.D.: Subconvex bounds on gl(3) via degeneration to frequency zero. Math. Ann. (2018). https://doi.org/10.1007/s00208-018-1711-y

    Article  MATH  Google Scholar 

  21. Hörmander, L.: The Analysis of Linear Partial Differential Operators: III—Classics in Mathematics. Springer, Berlin, (2007). Pseudo-differential operators, Reprint of the 1994 edition

  22. Hrbacek, K.: Nonstandard set theory. Am. Math. Monthly 86(8), 659–677 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ichino, A., Ikeda, T.: On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture. Geom. Funct. Anal. 19(5), 1378–1425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Iwaniec, H., Sarnak, P.: \(L^\infty \) norms of eigenfunctions of arithmetic surfaces. Ann. Math. 141(2), 301–320 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iwaniec, H., Sarnak, P.: Perspectives on the analytic theory of \(L\)-functions. Geom. Funct. Anal. (Special Volume, Part II):705–741, (2000). GAFA 2000 (Tel Aviv, 1999)

  26. Iwaniec, H.: The spectral growth of automorphic l-functions. Journal für die reine und angewandte Mathematik 428, 139–160 (1992)

    MathSciNet  MATH  Google Scholar 

  27. Kawai, T.: Nonstandard analysis by axiomatic method. In: Southeast Asian conference on logic (Singapore, 1981), volume 111 of Stud. Logic Found. Math., pp 55–76. North-Holland, Amsterdam (1983)

  28. Khan, R.: On the subconvexity problem for \({\rm GL}(3)\times {\rm GL}(2)\)\(L\)-functions. Forum Math. 27(2), 897–913 (2015)

    Article  MathSciNet  Google Scholar 

  29. Kirillov, A.A.: Merits and demerits of the orbit method. Bull. Am. Math. Soc. 36(4), 433–488 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Knapp, A.W.: Representation Theory of Semisimple Groups, volume 36 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, (1986). An overview based on examples

  31. Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kumar, S., Mallesham, K., Singh, S.K.: Sub-convexity bound for \(GL(3) \times GL(2)\)\(L\)-functions: \(GL(3)\)-spectral aspect. ar**v:2006.07819 (2020)

  33. Kurtzke, J.F., Jr.: Centralizers of irregular elements in reductive algebraic groups. Pac. J. Math. 104(1), 133–154 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, X.: Bounds for \({\rm GL}(3)\times {\rm GL}(2)\)\(L\)-functions and \({\rm GL}(3)\)\(L\)-functions. Ann. Math. 173(1), 301–336 (2011)

    Article  MathSciNet  Google Scholar 

  35. Lin, Y., Michel, P., Sawin, W.: Algebraic twists of \({{\rm GL}}_3\times {{\rm GL}}_2\)\(L\)-functions. ar**v:1912.09473 (2019)

  36. Luo, W., Rudnick, Z., Sarnak, P.: On the generalized Ramanujan conjecture for \({\rm GL}(n)\). In: Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), volume 66 of Proc. Sympos. Pure Math., pp 301–310. Amer. Math. Soc., Providence, RI (1999)

  37. Luo, Z.: A local trace formula for the local gan-gross-prasad conjecture for special orthogonal groups. ar**v:2009.13947 (2020)

  38. Michel, P.: Analytic number theory and families of automorphic \(L\)-functions. In Automorphic forms and applications, volume 12 of IAS/Park City Math. Ser., pp 181–295. Amer. Math. Soc., Providence, RI (2007)

  39. Michel, P., Venkatesh, A.: Equidistribution, \(L\)-functions and ergodic theory: on some problems of Yu. Linnik. In: International congress of mathematicians. Vol. II, pp 421–457. Eur. Math. Soc., Zürich (2006)

  40. Michel, P., Venkatesh, A.: The subconvexity problem for \({\rm GL}_2\). Publ. Math. Inst. Hautes Études Sci. 111, 171–271 (2010)

    Article  MATH  Google Scholar 

  41. Munshi, R.: The circle method and bounds for \(L\)-functions–III: \(t\)-aspect subconvexity for \(GL(3)\)\(L\)-functions. J. Am. Math. Soc. 28(4), 913–938 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Munshi, R.: The circle method and bounds for \(L\)-functions–IV: subconvexity for twists of \({{\rm GL}}(3)\)\(L\)-functions. Ann. Math. 182(2), 617–672 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Munshi, R.: Subconvexity for \(GL(3)\times GL(2)\)\(L\)-functions in \(t\)-aspect. ar**v:1810.00539 (2018)

  44. Nelson, E.: Internal set theory: a new approach to nonstandard analysis. Bull. Am. Math. Soc. 83(6), 1165–1198 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nelson, P.D.: Bounds for standard \(L\)-functions. ar**v:2109.15230 (2021)

  46. Nelson, P.D., Venkatesh, A.: The orbit method and analysis of automorphic forms. Acta Math. 226(1), 1–209 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rallis, S., Schiffmann, G.: Multiplicity one Conjectures. Ar**v e-prints (2007)

  48. Rieffel, M.A.: Lie group convolution algebras as deformation quantizations of linear Poisson structures. Am. J. Math. 112(4), 657–685 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rossmann, W.: Limit characters of reductive Lie groups. Invent. Math. 61(1), 53–66 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rossmann, W.: Tempered representations and orbits. Duke Math. J. 49(1), 231–247 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rossmann, W.: Kirillov’s character formula for reductive Lie groups. Invent. Math. 48(3), 207–220 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  52. SageMath, Inc.: CoCalc Collaborative Calculation Online. (2020). https://cocalc.com/

  53. Sakellaridis, Y., Venkatesh, A.: Periods and harmonic analysis on spherical varieties. Astérisque, 396, viii+360 (2017)

  54. Sarnak, P.: Fourth moments of Grössencharakteren zeta functions. Commun. Pure Appl. Math. 38(2), 167–178 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sarnak, P.: Letter to Cathleen Morawetz. (2004)

  56. Serre, J.P.: Lie algebras and Lie groups, volume 1500 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, (2006). 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition

  57. Sharma, P.: Subconvexity for \(GL(3)\times GL(2)\)\(L\)-functions in \(GL(3)\) spectral aspect. ar**v:2010.10153, (2020)

  58. Silberman, L., Venkatesh, A.: Quantum unique ergodicity for locally symmetric spaces II

  59. Sun, B., Zhu, C.-B.: Multiplicity one theorems: the Archimedean case. Ann. Math. 175(1), 23–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Venkatesh, A.: Sparse equidistribution problems, period bounds and subconvexity. Ann. Math. 172(2), 989–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Waldspurger, J.L.: Une formule intégrale reliée à la conjecture locale de Gross-Prasad, 2e partie: extension aux représentations tempérées. Astérisque, 346, 171–312 (2012). Sur les conjectures de Gross et Prasad. I

  62. Weil, A.: Basic Number Theory. Die Grundlehren der mathematischen Wissenschaften, Band 144. Springer-Verlag, New York-Berlin, third edition, (1974)

  63. Zhang, W.: Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups. Ann. Math. 180(3), 971–1049 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhang, W.: Automorphic period and the central value of Rankin-Selberg L-function. J. Amer. Math. Soc. 27(2), 541–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Valentin Blomer, Simon Marshall, Philippe Michel, Abhishek Saha, Peter Sarnak, Akshay Venkatesh, Liyang Yang and Wei Zhang for their helpful feedback on an earlier draft. We are also grateful to Liyang Yang for suggesting an improvement to Lemma 15.3 and to the anonymous referee for a very detailed reading and many helpful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Nelson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, P.D. Spectral aspect subconvex bounds for \(U_{n+1} \times U_n\). Invent. math. 232, 1273–1438 (2023). https://doi.org/10.1007/s00222-023-01180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-023-01180-x

Mathematics Subject Classification

Navigation