Log in

Time Decay of Scaling Critical Electromagnetic Schrödinger Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain a representation formula for solutions to Schrödinger equations with a class of homogeneous, scaling-critical electromagnetic potentials. As a consequence, we prove the sharp \({L^1 \to L^\infty}\) time decay estimate for the 3D-inverse square and the 2D-Aharonov–Bohm potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Fokas, A.S.: Introduction and Applications of Complex Variables. Cambridge: Cambridge University Press, second edition, 2003

  2. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964

  3. Beals M.: Optimal L decay for solutions to the wave equation with a potential. Commun. Partial Differ. Equ. 19(7–8), 1319–1369 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beals M., Strauss W.: L p estimates for the wave equation with a potential. Commun. Partial Differ. Equ. 18(7–8), 1365–1397 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beceanu, M., Goldberg, M.: Decay estimates for the Schrödinger equation with critical potentials. Commun. Math. Phys. http://arxiv.org/abs/1009.5285v1 [math.AP], 2010, to appear

  6. Bezubik, A., Strasburger, A.: A new form of the spherical expansion of zonal functions and Fourier transforms of rm SO(d)-finite functions, SIGMA Symmetry Integrability Geom. Methods Appl. 2, Paper 033, 8 pp. (2006)

  7. Burq N., Planchon F., Stalker J., Tahvildar-Zadeh S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burq N., Planchon F., Stalker J., Tahvildar-Zadeh S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cuccagna S.: On the wave equation with a potential. Commun. Partial Differ. Equ. 25(7–8), 1549–1565 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuccagna S., Schirmer P.: On the wave equation with a magnetic potential. Commun. Pure Appl. Math. 54(2), 135–152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Ancona P., Fanelli L.: L p-boundedness of the wave operator for the one dimensional Schrödinger operators. Commun. Math. Phys. 268, 415–438 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. D’Ancona P., Fanelli L.: Decay estimates for the wave and Dirac equations with a magnetic potential. Commun. Pure Appl. Math. 60, 357–392 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Ancona P., Fanelli L.: Strichartz and smoothing estimates for dispersive equations with magnetic potentials. Commun. Partial Differ. Equ. 33, 1082–1112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Ancona P., Fanelli L., Vega L., Visciglia N.: Endpoint Strichartz estimates for the magnetic Schrödinger equation. J. Funct. Anal. 258, 3227–3240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Ancona P., Pierfelice V.: On the wave equation with a large rough potential. J. Funct. Anal. 227, 30–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdogan M.B., Goldberg M., Schlag W.: Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21, 687–722 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erdogan M.B., Goldberg M., Schlag W.: Strichartz and smoothing estimates for Schrodinger operators with large magnetic potentials in \({\mathbb{R}^3}\). J. Eur. Math. Soc. 10, 507–531 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fanelli L., García A.: Counterexamples to Strichartz estimates for the magnetic Schrödinger equation. Commun. Contemp. Math. 13(2), 213–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Felli V., Ferrero A., Terracini S.: Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. 13(1), 119–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. García Azorero J., Peral I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144, 441–476 (1998)

    Article  ADS  MATH  Google Scholar 

  21. Georgiev V., Stefanov A., Tarulli M.: Smoothing - Strichartz estimates for the Schrödinger equation with small magnetic potential. Discret. Contin. Dyn. Syst. A 17, 771–786 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Georgiev V., Visciglia N.: Decay estimates for the wave equation with potential. Commun. Partial Differ. Equ. 28(7-8), 1325–1369 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ginibre J., Velo G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. 64, 363–401 (1984)

    MathSciNet  Google Scholar 

  24. Ginibre J., Velo G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133(1), 50–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Goldberg M., Schlag W.: Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251(1), 157–178 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Goldberg, M., Vega, L., Visciglia, N.: Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials. Int. Math Res. Not., 2006, article ID 13927 (2006)

  27. Grillo, G., Kovarik H.: it Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov–Bohm magnetic field. http://arxiv.org/abs/1210.7648v1 [math.SP], 2012

  28. Hardy, G., Littlewood, J.E., Polya, G.: Inequalities. Reprint of the 1952 edition. Cambridge Mathematical Library. Cambridge: Cambridge University Press, 1988

  29. Ismail, M.E.H.: Classical and quantum orthogonal polynomials in one variable. Encyclopedia of Mathematics and its Applications, Vol. 98. Cambridge: Cambridge University Press, 2005

  30. Jensen A., Nakamura S.: Map** properties of functions of Schrödinger operators between L p-spaces and Besov spaces. Adv. Stud. Pure Math. 23, 187–209 (1994)

    MathSciNet  Google Scholar 

  31. Journé J.-L.., Soffer A., Sogge C.-D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44(5), 573–604 (1991)

    Article  MATH  Google Scholar 

  32. Kato T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kavian O., Weissler F.B.: Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation. Michigan Math. J. 41(1), 151–173 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Laptev, A., Weidl, T.: Hardy inequalities for magnetic Dirichlet forms. In: Mathematical results in quantum mechanics (Prague, 1998), Oper. Theory Adv. Appl. Vol. 108, Basel: Birkhäuser, 1999, pp. 299–305

  36. Lebedev, N.N.: Special functions and their applications. Revised edition, translated from the Russian and edited by Richard A. Silverman. Unabridged and corrected republication. New York: Dover Publications, Inc., 1972

  37. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, Vol. 14, Providence, RI: Amer. Math. Soc., 1997

  38. MacDonald A.D.: Properties of the confluent hypergeometric function. J. Math. Phys. 28, 183–191 (1949)

    MathSciNet  MATH  Google Scholar 

  39. Marzuola J., Metcalfe J., Tataru D.: Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. J. Funct. Anal. 255, 1497–1553 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Müller, C.: Spherical harmonics. Lecture Notes in Mathematics, 17, Berlin: Springer-Verlag, 1966

  41. Planchon F., Stalker J., Tahvildar-Zadeh S.: Dispersive estimates for the wave equation with the inverse-square potential. Discret. Contin. Dyn. Syst. 9, 1387–1400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press, 1978

  43. Robbiano, L., Zuily, C.: Strichartz estimates for Schrödinger equations with variable coefficients. Mém. Soc. Math. Fr. (N.S.), No. 101–102, 2005

  44. Rodnianski I., Schlag W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Safarov, Yu., Vassiliev, D.: The asymptotic distribution of eigenvalues of partial differential operators. Translated from the Russian manuscript by the authors, Translations of Mathematical Monographs, Vol. 155. Providence, RI: American Mathematical Society, 1997

  46. Schlag, W.: Dispersive estimates for Schrödinger operators: a survey. In: Mathematical aspects of nonlinear dispersive equations, 255285, Ann. of Math. Stud. Vol. 163 Princeton, NJ: Princeton Univ. Press, 2007

  47. Segal I.: Space-time decay for solutions of wave equations. Adv. Math. 22(3), 305–311 (1976)

    Article  MATH  Google Scholar 

  48. Staffilani G., Tataru D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Equ. 27(7–8), 1337–1372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stefanov A.: Strichartz estimates for the magnetic Schrödinger equation. Adv. Math. 210, 246–303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Strichartz R.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equation. Duke Math. J. 44, 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tomas P.: A restriction theorem for the Fourier transform. Bull. Am. Math. Soc. 81, 477–478 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  52. Watson, G.N.: A treatise on the theory of Bessel functions. 2nd edn., London, England: Cambridge Univ. Press, 1944

  53. Weder R.: The W k,p -continuity of the Schrödinger Wave Operators on the line. Commun. Math. Phys. 208, 507–520 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Weder R.: L pL p' estimates for the Schrödinger equations on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yajima K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Yajima K.: The W k,p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47(3), 551–581 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yajima K.: The W k,p-continuity of wave operators for Schrödinger operators III, even dimensional cases \({m\geqslant4}\). J. Math. Sci. Univ. Tokyo 2, 311–346 (1995)

    MathSciNet  MATH  Google Scholar 

  58. Yajima K.: L p-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208(1), 125–152 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fanelli.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanelli, L., Felli, V., Fontelos, M.A. et al. Time Decay of Scaling Critical Electromagnetic Schrödinger Flows. Commun. Math. Phys. 324, 1033–1067 (2013). https://doi.org/10.1007/s00220-013-1830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1830-y

Keywords

Navigation