Log in

Time Decay of Scaling Invariant Electromagnetic Schrödinger Equations on the Plane

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the sharp \({L^1-L^\infty}\) time-decay estimate for the 2D -Schrödinger equation with a general family of scaling critical electromagnetic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barceló J.A., Ruiz A., Vega L.: Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal. 150, 356–382 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beceanu M., Goldberg M.: Schödinger dispersive estimates for a scaling-critical class of potentials. Commun. Math. Phys. 314, 471–481 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Borg G.: Umkerhrung der Sturm-Liouvillischen Eigebnvertanfgabe Bestimung der difúerentialgleichung die Eigenverte. Acta Math. 78, 1–96 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burq N., Planchon F., Stalker J., Tahvildar-Zadeh S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burq N., Planchon F., Stalker J., Tahvildar-Zadeh S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences. American Mathematical Society, New York, Providence (2003)

  7. Erdogan M.B., Goldberg M., Schlag W.: Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21, 687–722 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Erdogan M.B., Goldberg M., Schlag W.: Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in \({{\mathbb{R}}^3}\). J. Eur. Math. Soc. 10, 507–531 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. D’Ancona P., Fanelli L.: L p-boundedness of the wave operator for the one dimensional Schrödinger operators. Commun. Math. Phys. 268, 415–438 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. D’Ancona P., Fanelli L.: Decay estimates for the wave and Dirac equations with a magnetic potential. Commun. Pure Appl. Math. 60, 357–392 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. D’Ancona P., Fanelli L.: Strichartz and smoothing estimates for dispersive equations with magnetic potentials. Commun. Partial Differ. Equ. 33, 1082–1112 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. D’Ancona P., Fanelli L., Vega L., Visciglia N.: Endpoint Strichartz estimates for the magnetic Schrödinger equation. J. Funct. Anal. 258, 3227–3240 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Duyckaerts T.: Inégalités de résolvante pour l’opérateur de Schrödinger avec potentiel multipolaire critique. Bull. de la Société mathématique de France 134, 201–239 (2006)

    MATH  MathSciNet  Google Scholar 

  14. Fanelli L., Felli V., Fontelos M., Primo A.: Time decay of scaling critical electromagnetic Schrödinger flows. Commun. Math. Phys. 324, 1033–1067 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Fanelli, L., Felli, V., Fontelos, M., Primo, A.: Time decay of scaling invariant Schrödinger equations on the plane, Preprint. Available online at http://arxiv.org/abs/1405.1784 (2014)

  16. Fanelli L., García A.: Counterexamples to Strichartz estimates for the magnetic Schrödinger equation. Commun. Contemp. Math. 13(2), 213–234 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Felli V., Ferrero A., Terracini S.: Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. 13(1), 119–174 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Felli V., Marchini E.M., Terracini S.: On Schrödinger operators with multipolar inverse-square potentials. J. Funct. Anal. 250, 265–316 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Felli V., Marchini E.M., Terracini S.: On Schrödinger operators with multisingular inverse-square anisotropic potentials. Indiana Univ. Math. J. 58, 617–676 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Georgiev V., Stefanov A., Tarulli M.: Smoothing—Strichartz estimates for the Schrödinger equation with small magnetic potential. Discret. Contin. Dyn. Syst. A 17, 771–786 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goldberg M.: Dispersive estimates for the three-dimensional Schrödinger equation with rough potential. Am. J. Math. 128, 731–750 (2006)

    Article  MATH  Google Scholar 

  22. Goldberg M., Schlag W.: Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251(1), 157–178 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Goldberg, M., Vega, L., Visciglia, N.: Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials. Int. Math. Res. Not. 2006 article ID 13927 (2006)

  24. García Azorero J., Peral I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144, 441–476 (1998)

    Article  ADS  MATH  Google Scholar 

  25. Grillo G., Kovarik H.: Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov-Bohm magnetic field. J. Differ. Equ. 256, 3889–3911 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Gurarie D.: Zonal Schrödinger operators on the n-Sphere: inverse spectral problem and rigidity. Commun. Math. Phys. 131, 571–603 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Reprint of the 1952 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988)

  28. Kalf, H., Schmincke, U.-W., Walter, J., Wüst, R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens). Lecture Notes in Math., vol. 448, pp. 182–226. Springer, Berlin (1975)

  29. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg (1995)

    MATH  Google Scholar 

  30. Lebedev, N.N.: Special functions and their applications. Revised edition, translated from the Russian and edited by Richard A. Silverman. Unabridged and corrected republication. Dover Publications, Inc., New York (1972)

  31. Landau L.J.: Bessel functions: monotonicity and bounds. J. Lond. Math. Soc. 61(1), 197–215 (2000)

    Article  MATH  Google Scholar 

  32. Marzuola J., Metcalfe J., Tataru D.: Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. J. Funct. Anal. 255, 1497–1553 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Planchon F., Stalker J., Tahvildar-Zadeh S.: Dispersive estimates for the wave equation with the inverse-square potential. Discret. Contin. Dyn. Syst. 9, 1387–1400 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Reed M., Simon B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  35. Robbiano, L., Zuily, C.: Strichartz estimates for Schrödinger equations with variable coefficients, Mém. Soc. Math. Fr. (N.S.) 101-102, vi+208 (2005)

  36. Rodnianski I., Schlag W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Schlag W.: Dispersive estimates for Schrödinger operators: a survey, Mathematical aspects of nonlinear dispersive equations, 255285, Ann. of Math. Stud., 163. Princeton Univ. Press, Princeton (2007)

    Google Scholar 

  38. Simon B.: Essential self-adjointness of Schrödinger operators with singular potentials. Arch. Ration. Mech. Anal. 52, 44–48 (1973)

    Article  MATH  Google Scholar 

  39. Staffilani G., Tataru D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Equ. 27(7-8), 1337–1372 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Stefanov A.: Strichartz estimates for the magnetic Schrödinger equation. Adv. Math. 210, 246–303 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Thomas L.E., Villegas-Blas C.: Singular continuous limiting eigenvalue distributions for Schrödinger operators on a 2-sphere. J. Funct. Anal. 141, 249–273 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Thomas L.E., Wassell S.R.: Semiclassical approximation for Schrödinger operators on a two-sphere at high energy. J. Math. Phys. 36(10), 5480–5505 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Weder R.: The W k,p -continuity of the Schrödinger wave operators on the line. Commun. Math. Phys. 208, 507–520 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Weder R.: \({L^p-L^{p^{\prime}}}\) estimates for the Schrödinger equations on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Weinstein A.: Asymptotics for eigenvalue clusters for the laplacian plus a potencial. Duke Math. J. 44(4), 883–892 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  46. Yajima K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Yajima K.: The W k,p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47(3), 551–581 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yajima K.: The W k,p-continuity of wave operators for Schrödinger operators III, even dimensional cases \({m\geqslant4}\). J. Math. Sci. Univ. Tokyo 2, 311–346 (1995)

    MATH  MathSciNet  Google Scholar 

  49. Yajima K.: \({L\sp p}\) -boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208(1), 125–152 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Felli.

Additional information

Communicated by W. Schlag

L. Fanelli was supported by the Italian project FIRB 2012: “Dispersive dynamics: Fourier Analysis and Variational Methods”. V. Felli was partially supported by the P.R.I.N. 2012 grant “Variational and perturbative aspects of nonlinear differential problems”. M. A. Fontelos was supported by the Spanish project “MTM2011-26016”. A. Primo was supported by the Spanish project “MTM2010-18128”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanelli, L., Felli, V., Fontelos, M.A. et al. Time Decay of Scaling Invariant Electromagnetic Schrödinger Equations on the Plane. Commun. Math. Phys. 337, 1515–1533 (2015). https://doi.org/10.1007/s00220-015-2291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2291-2

Keywords

Navigation