Log in

Differential lipid analysis of oxaliplatin-sensitive and resistant HCT116 cells reveals different levels of drug-induced lipid droplet formation

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lipid droplets (LDs) are intracellular storage vesicles composed of a neutral lipid core surrounded by a glycerophospholipid membrane. LD accumulation is associated with different stages of cancer progression and stress responses resulting from chemotherapy. In previous work, a novel dual nano-electrospray ionization source and data-dependent acquisition method for measuring the relative abundances of lipid species between two extracts were described and validated. Here, this same source and method were used to determine if oxaliplatin-sensitive and resistant cells undergo similar lipid profile changes, with the goal of identifying potential signatures that could predict the effectiveness of an oxaliplatin-containing treatment. Oxaliplatin is commonly used in the treatment of colorectal cancer. When compared to a no-drug control, oxaliplatin dosing caused significant increases in triglyceride (TG) and cholesterol ester (CE) species. These increases were more pronounced in the oxaliplatin-sensitive cells than in oxaliplatin-resistant cells. The increased neutral lipid abundance correlated with LD formation, as confirmed by confocal micrographs of Nile Red–stained cells. Untargeted proteomic analyses also support LD formation after oxaliplatin treatment, with an increased abundance of LD-associated proteins in both the sensitive and resistant cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004;3(4):294–300. https://doi.org/10.1177/1534735404270335.

    Article  CAS  PubMed  Google Scholar 

  2. Delikatny EJ, Cooper WA, Brammah S, Sathasivam N, Rideout DC. Nuclear magnetic resonance-visible lipids induced by cationic lipophilic chemotherapeutic agents are accompanied by increased lipid droplet formation and damaged mitochondria. Cancer Res. 2002;62(5):1394–400.

    CAS  PubMed  Google Scholar 

  3. Boren J, Brindle KM. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ. 2012;19(9):1561–70. https://doi.org/10.1038/cdd.2012.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu J, Hu D, Cheng Y, Guo J, Wang Y, Tan Z, Peng J, Zhou H. Lipidomics and transcriptomics analyses of altered lipid species and pathways in oxaliplatin-treated colorectal cancer cells. J Pharm Biomed Anal. 2021;200: 114007. https://doi.org/10.1016/j.jpba.2021.114077.

    Article  CAS  Google Scholar 

  5. Pakiet A, Sikora K, Kobiela J, Rostkowska O, Mika A, Sledzinski T. Alterations in complex lipids in tumor tissue of patients with colorectal cancer. Lipids Health Dis. 2021;20(1):85. https://doi.org/10.1186/s12944-021-01512-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coleman O, Ecker M, Haller D. Dysregulated lipid metabolism in colorectal cancer. Curr Opin Gastroenterol. 2022;38(2):162–7. https://doi.org/10.1097/MOG.0000000000000811.

    Article  CAS  PubMed  Google Scholar 

  7. Yan G, Li L, Zhu B, Li Y. Lipidome in colorectal cancer. Oncotarget. 2016;7(22):33429–39. https://doi.org/10.18632/oncotarget.7960.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petan T. Lipid droplets in cancer. Rev Physiol Biochem Pharmacol. 2023;185:53–86. https://doi.org/10.1007/112_2020_51.

    Article  PubMed  Google Scholar 

  9. Cotte AK, Aires V, Fredon M, Limagne E, Derangere V, Thibaudin M, Humblin E, Scagliarini A, de Barros JPP, Hillon P, Ghiringhelli F, Delmas D. Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat Commun. 2018;9(1):322. https://doi.org/10.1038/s41467-017-02732-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cruz ALS, de A Barretto E, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis. 2020;11(2):105. https://doi.org/10.1038/s41419-020-2297-3.

  11. Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis. 2019;18(1):29. https://doi.org/10.1186/s12944-019-0977-8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Deng J, Yang Y, Zeng Z, **ao X, Li J, Luan T. Discovery of potential lipid biomarkers for human colorectal cancer by in-capillary extraction nanoelectrospray ionization mass spectrometry. Anal Chem. 2021;93(38):13089–98. https://doi.org/10.1021/acs.analchem.1c03249.

    Article  CAS  PubMed  Google Scholar 

  13. Fhaner C, Liu SS, Ji H, Simpson R, Reid G. Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem. 2012;84(21):8917–26. https://doi.org/10.1021/ac302154g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Listenberger LL, Studer AM, Brown DA, Wolins NE. Fluorescent detection of lipid droplets and associated proteins. Curr Prot Cell Biol. 2016;71(4):31.31–31.14. https://doi.org/10.1002/cpcb.7.

  15. Daeman S, van Zandvoort MAMJ, Parekh SH, Hesselink MKC. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Mol Metab. 2015;5(3):153–63. https://doi.org/10.1016/j.molmet.2015.12.005.

    Article  CAS  Google Scholar 

  16. Gupta A, Dorlhiac GF, Streets AM. Quantitative imaging of lipid droplets in single cells. Analyst. 2019;144(3):753–65. https://doi.org/10.1039/c8an01525b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Delikatny EJ, Chawla S, Leung DJ, Poptani H. MR-visible lipids and the tumor microenvironment. NMR Biomed. 2011;24(6):592–611. https://doi.org/10.1002/nbm.1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Z, Cheng S, Lin Q, Cao W, Yang J, Zhang M, Shen A, Zhang W, **a Y, Ma X, Ouyang Z. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat Commun. 2021;12(1):2869. https://doi.org/10.1038/s41467-021-23161-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Xu T, Zhang J, Wong SCC, Ritchie M, Hou HW, Wang Y. Single cell metabolite detection using inertial microfluidics-assisted ion mobility mass spectrometry. Anal Chem. 2021;93(30):10462–8. https://doi.org/10.1021/acs.analchem.1c00106.

    Article  CAS  PubMed  Google Scholar 

  20. Xu T, Li H, Feng D, Dou P, Shi X, Hu C, Xu G. Lipid profiling of 20 mammalian cells by capillary microsampling combined with high-resolution spectral stitching nanoelectrospray ionization direct-infusion mass spectrometry. Anal Chem. 2021;93(29):10031–8. https://doi.org/10.1021/acs.analchem.1c00373.

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Sun M, Yang Z. Single cell mass spectrometry analysis of drug-resistant cancer cells: metabolomics studies of synergetic effect of combinational treatment. Anal Chim Acta. 2022;1201: 339261. https://doi.org/10.1016/j.aca.2022.339621.

    Article  CAS  Google Scholar 

  22. Sun M, Chen X, Yang Z. Single cell mass spectrometry studies reveal metabolomic features and potential mechanisms of drug-resistant cancer cell lines. Anal Chim Acta. 2022;1206(1): 339761. https://doi.org/10.1016/j.aca.2022.339761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keating JE, Glish GL. Dual emitter nano-electrospray ionization coupled to differential ion mobility spectrometry-mass spectrometry for shotgun lipidomics. Anal Chem. 2018;90(15):9117–24. https://doi.org/10.1021/acs.analchem.8b01528.

    Article  CAS  PubMed  Google Scholar 

  24. Larson TS, Worthington CD, Verber MD, Keating JE, Lockett MR, Glish GL. DiffN selection of tandem mass spectrometry precursors. Anal Chem. 2023;95(25):9581–8. https://doi.org/10.1021/acs.analchem.3c01085.

    Article  CAS  PubMed  Google Scholar 

  25. Comella P, Casaretti R, Sandomenico C, Avallone A, Franco L. Role of oxaliplatin in the treatment of colorectal cancer. Ther Clin Risk Manag. 2009;5:229–38. https://doi.org/10.2147/tcrm.s3583.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dharmasiri U, Isenberg S, Glish G, Armistead P. Differential ion mobility spectrometry coupled to tandem mass spectrometry enables targeted leukemia antigen detection. J Proteome Res. 2014;13(10):4356–62. https://doi.org/10.1021/pr500527c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015;111(A3):B.1-B.3. https://doi.org/10.1002/0471142735.ima03bs111.

  28. Matyash V, Liebisch G, Kurzchalia T, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46. https://doi.org/10.1194/jlr.D700041-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fahy E, Sud M, Cotter D, Subramaniam S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 2007;35:W606-612. https://doi.org/10.1093/nar/gkm324.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Subramaniam S. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007;35:D527–32. https://doi.org/10.1093/nar/gkl838.

    Article  CAS  PubMed  Google Scholar 

  31. Arango D, Wilson AJ, Shi Q, Corner GA, Aranes MJ, Nicholas C, Lesser M, Mariadason JM, Augenlicht LH. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br J Cancer. 2004;91(11):1931–46. https://doi.org/10.1038/sj.bjc.6602215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomicic MT, Kramer F, Nguyen A, Schwarzenbach C, Christmann M. Oxaliplatin-induced senescence in colorectal cancer cells depends on p14ARF-mediated sustained p53 activation. Cancers. 2021;13(9):2019. https://doi.org/10.3390/cancers13092019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henne WM, Reese ML, Goodman JM. The assembly of lipid droplets and their roles in challenged cells. EMBO J. 2018;37(12): e98947. https://doi.org/10.15252/embj.201898947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:1221–32. https://doi.org/10.1016/j.bbalip.2017.07.009.

    Article  CAS  PubMed  Google Scholar 

  35. Lass A, Zimmerman R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G, Zechner R. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman syndrome. Cell Metab. 2006;5:309–19. https://doi.org/10.1016/j.cmet.2006.03.005.

    Article  CAS  Google Scholar 

  36. Li DJ, Zhao YG, Li D, Zhao H, Huang J, Miao G, Feng D, Liu P, Li D, Zhang H. The ER-localized protein DFCP1 modulates ER-lipid droplet contact formation. Cell Rep. 2019;27(2):343–58. https://doi.org/10.1016/j.celrep.2019.03.025.

    Article  CAS  PubMed  Google Scholar 

  37. Gao G, Sheng Y, Yang H, Chua BT, Xu L. DFCP1 associates with lipid droplets. Cell Biol Int. 2019;43(12):1492–504. https://doi.org/10.1002/cbin.11199.

    Article  CAS  PubMed  Google Scholar 

  38. Chen S, Roberts MA, Chen CY, Markmiller S, Wei HG, Yeo GW, Granneman JG, Olzmann JA, Ferro-Novick S. VPS13A and VPS13C influence lipid droplet abundance. Contact. 2022;5:25152564221125612. https://doi.org/10.1177/25152564221125613.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li PQ, Lees JA, Wheeler H, Reinisch KM, De Camilli P. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol. 2018;217(10):3625–39. https://doi.org/10.1083/jcb.201807019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the UNC Microscopy Services Laboratory (MSL) and its director, Dr. Pablo Ariel, for confocal microscope training and access. We also thank Dr. Cameron Worthington and Ms. Alexis Zimmer for their helpful discussions.

Funding

This work was supported by the National Institute of General Medical Sciences through Grant Award Number R35 GM128697. Some of this research was conducted at the UNC Proteomics Core Facility and Microscopy Services Laboratory (MSL). These facilities are supported in part by an NCI Center Core Support Grant (P30 CA016086), awarded to the UNC Lineberger Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gary L. Glish or Matthew R. Lockett.

Ethics declarations

Conflict of interest

The authors declare the following competing financial interest(s): Bruker Daltonics maintains an active license to some of the previously patented UNC DIMS IP used in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2939 KB)

Supplementary file2 (XLSX 49679 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, T.S., DiProspero, T.J., Glish, G.L. et al. Differential lipid analysis of oxaliplatin-sensitive and resistant HCT116 cells reveals different levels of drug-induced lipid droplet formation. Anal Bioanal Chem 416, 151–162 (2024). https://doi.org/10.1007/s00216-023-05010-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05010-0

Keywords

Navigation