Log in

Preparation of a hydrophobic deep eutectic solvent and its application in the detection of quinolone residues in cattle urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Enrichment for the detection of quinolone residues is usually cumbersome and requires large amounts of toxic organic reagents. Therefore, this study synthesized a low-toxicity hydrophobic deep eutectic solvent (DES) with dl-menthol and p-cresol, which was then characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and thermal analysis. A simple and rapid vortex-assisted liquid–liquid microextraction method was developed based on this DES for the extraction of eight quinolones from cattle urine. The optimal extraction conditions were screened by examining the DES volume, extraction temperature, vortex time, and salt concentration. Under the optimal conditions, the linear ranges of the eight quinolones were 1 ~ 100 μg/L with good linearity (r2 was 0.998 ~ 0.999), and the limits of detection and quantification were 0.08 ~ 0.30 μg/L and 0.27 ~ 0.98 μg/L, respectively. The average extraction recoveries of spiked cattle urine samples were 70.13 ~ 98.50% with relative standard deviations below 13.97%. This method can provide a reference for the pre-treatment of quinolone residue detection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vakh C, Pochivalov A, Koronkiewicz S, et al. A chemiluminescence method for screening of fluoroquinolones in milk samples based on a multi-pum** flow system. Food Chem. 2019;270:10–6. https://doi.org/10.1016/j.foodchem.2018.07.073.

    Article  CAS  PubMed  Google Scholar 

  2. Hou L, Ji Y, Zhao J, Zhao L. Deep eutectic solvent based-ferrofluid ultrasonic-assisted liquid-liquid microextraction for determination of quinolones in milk samples. Microchem J. 2022;179:107664. https://doi.org/10.2139/ssrn.4067215.

    Article  CAS  Google Scholar 

  3. Wang C, Li X, Yu F, Wang Y, **a X. Multi-class analysis of veterinary drugs in eggs using dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2021;334:127598. https://doi.org/10.1016/j.foodchem.2020.127598.

    Article  CAS  PubMed  Google Scholar 

  4. Qian S, Qiao L, Xu W, Jiang K, Lin H. An inner filter effect-based near-infrared probe for the ultrasensitive detection of tetracyclines and quinolones. Talanta. 2019;194:598–603. https://doi.org/10.1016/j.talanta.2018.10.097.

    Article  CAS  PubMed  Google Scholar 

  5. Hu Y, Cheng H. Elevated antimicrobial residues in animal food products call for institutional changes on veterinary drug management and animal food product surveillance in China. Int J Antimicrob Agents. 2018;51(1):165–6. https://doi.org/10.1016/j.ijantimicag.2017.11.016.

    Article  CAS  PubMed  Google Scholar 

  6. D’Angelo V, Tessari F, Bellagamba G, Luca DE, Cifelli R, Celia C, Primavera R, Francesco DM, Paolino D, Marzio DL, Locatelli M. Microextraction by packed sorbent and HPLC-PDA quantification of multiple anti-inflammatory drugs and fluoroquinolones in human plasma and urine. J Enzym Inhib Med Ch. 2016;31(3):110–6. https://doi.org/10.1080/14756366.2016.1209496.

    Article  CAS  Google Scholar 

  7. Locatelli M, Ciavarella MT, Paolino D, Celia C, Fiscarelli E, Ricciotti G, Pompilio A, Bonaventura GD, Grande R, Zengin G, Marzio LD. Determination of ciprofloxacin and levofloxacin in human sputum collected from cystic fibrosis patients using microextraction by packed sorbent-high performance liquid chromatography photodiode array detector. J Chromatogr A. 2015;1419:58–66. https://doi.org/10.1016/j.chroma.2015.09.075.

    Article  CAS  PubMed  Google Scholar 

  8. Mmka C, Sbhe A, Rl B, Ps A, Yy C, Ct A. A review of green solvent extraction techniques and their use in antibiotic residue analysis. J Pharm Biomed Anal. 2022;209:114487. https://doi.org/10.1016/j.jpba.2021.114487.

    Article  CAS  Google Scholar 

  9. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chem Comm. 2003;9(1):70–1. https://doi.org/10.1039/B210714G.

    Article  Google Scholar 

  10. Bezold F, Weinberger M, Minceva M. Computational solvent system screening for the separation of tocopherols with centrifugal partition chromatography using deep eutectic solvent-based biphasic systems. J Chromatogr A. 2017;1491:153–8. https://doi.org/10.1016/j.chroma.2017.02.059.

    Article  CAS  PubMed  Google Scholar 

  11. Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V. Application of deep eutectic solvents in analytical chemistry. Microchem J. 2017;135:33–8. https://doi.org/10.1016/j.microc.2017.07.015.

    Article  CAS  Google Scholar 

  12. Tereshatov EE, Boltoeva MY, Folden CM. First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium extraction from hydrochloric and oxalic acids. Green Chem. 2016;18(17):4616–22. https://doi.org/10.1039/C5GC03080C.

    Article  CAS  Google Scholar 

  13. Liao QG, Zhang DW, Luo LG, Zha X. Ultrasonic-assisted dispersive liquid–liquid microextraction based on a simple and green deep eutectic solvent for preconcentration of macrolides from swine urine samples. Sep Sci plus. 2020;3:22–7. https://doi.org/10.1002/sscp.201900064.

    Article  CAS  Google Scholar 

  14. Potka Wasylka J, Guardia MDL, Andruch V, Vilková M. Deep eutectic solvents vs ionic liquids similarities and differences. Microchem J. 2020;159:105539. https://doi.org/10.1016/j.microc.2020.105539.

    Article  CAS  Google Scholar 

  15. Li G, Row KH. Utilization of deep eutectic solvents in dispersive liquid-liquid micro-extraction. Trends Analyt Chem. 2019;120(1–2):115651. https://doi.org/10.1016/j.trac.2019.115651.

    Article  CAS  Google Scholar 

  16. Kiszkiel-Taudul I, Starczewska B, Jarosz M. Microextraction of ampicillin from bovine milk using ionic liquids and deep eutectic solvents prior to its chromatographic determination with ultraviolet and tandem mass spectrometry detection. J Food Compos Anal. 2023;115:104944. https://doi.org/10.1016/j.jfca.2022.104944.

    Article  CAS  Google Scholar 

  17. Mogaddam MRA, Farajzadeh MA, Damirchi SA, Nemati M. Dispersive solid phase extraction combined with solidification of floating organic drop–liquid–liquid microextraction using in situ formation of deep eutectic solvent for extraction of phytosterols from edible oil samples. J Chromatogr A. 2020;1630:461523. https://doi.org/10.1016/j.chroma.2020.461523.

    Article  CAS  Google Scholar 

  18. Yakupova Z, Yakubenko A, Bogdanova P, Godunov P, Vakh C, Garmonov S, Bulatov A. Solidified floating organic drop microextraction procedure based on deep eutectic solvent for the determination of melatonin in pharmaceuticals and dietary supplements. Microchem J. 2023;187:108373. https://doi.org/10.1016/j.microc.2022.108373.

    Article  CAS  Google Scholar 

  19. Elahi F, Arain MB, Khan WA, et al. Ultrasound-assisted deep eutectic solvent-based liquid-liquid microextraction for simultaneous determination of Ni (II) and Zn (II) in food samples. Food Chem. 2022;393:133384. https://doi.org/10.1016/j.foodchem.2022.133384.

    Article  CAS  PubMed  Google Scholar 

  20. Haq HU, Bibi R, Arain MB, et al. Deep eutectic solvent (DES) with silver nanoparticles (Ag-NPs) based assay for analysis of lead (II) in edible oils. Food Chem. 2022;379:132085. https://doi.org/10.1016/j.foodchem.2022.132085.

    Article  CAS  Google Scholar 

  21. Malik A, Dhattarwal HS, Kashyap HK. An overview of structure and dynamics associated with hydrophobic deep eutectic solvents and their applications in extraction processes. Chem Phys Chem. 2022;23(18):e202200239. https://doi.org/10.1002/cphc.202200239.

    Article  CAS  PubMed  Google Scholar 

  22. Mako P, Supek E, Gbicki J. Hydrophobic deep eutectic solvents in microextraction techniques–a review. Microchem J. 2019;152:104384. https://doi.org/10.1016/j.microc.2019.104384.

    Article  CAS  Google Scholar 

  23. Makoś P, Przyjazny A, Boczkaj G. Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J Chromatogr A. 2018;1570:28–37. https://doi.org/10.1016/j.chroma.2018.07.070.

    Article  CAS  PubMed  Google Scholar 

  24. Envelope A, Kc A, As A, Mo A, Oo A, Fk A, et al. Liquid-liquid microextraction with hydrophobic deep eutectic solvent followed by magnetic phase separation for preconcentration of antibiotics. Talanta. 2023;252:123868. https://doi.org/10.1016/j.talanta.2022.123868.

    Article  CAS  Google Scholar 

  25. Malik A, Kashyap HK. Heterogeneity in hydrophobic deep eutectic solvents: SAXS prepeak and local environments. Phys Chem Chem Phys. 2021;23(6):3915–24. https://doi.org/10.1039/D0CP05407K.

    Article  CAS  PubMed  Google Scholar 

  26. Di X, Zhao X, Guo X. Hydrophobic deep eutectic solvent as a green extractant for high-performance liquid chromatographic determination of tetracyclines in water samples. J Sep Sci. 2020;43:3129–35. https://doi.org/10.1002/jssc.202000477.

    Article  CAS  PubMed  Google Scholar 

  27. Shirani M, Akbari-Adergani B, Shahdadi F, Faraji M, Akbari A. A hydrophobic deep eutectic solvent-based ultrasound-assisted dispersive liquid–liquid microextraction for determination of β-lactam antibiotics residues in food samples. Food Anal Methods. 2021;15(2):391–400. https://doi.org/10.1007/s12161-021-02122-0.

    Article  Google Scholar 

  28. Zhang Q, Karine D, Royer S, Jérôme F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41(21):7108–46. https://doi.org/10.1039/c2cs35178a.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Guo T, Wei Y, et al. Determination of quinolone antibiotic residues in human serum and urine using high-performance liquid chromatography/tandem mass spectrometry. J Anal Toxicol. 2019;43(7):579–86. https://doi.org/10.1093/jat/bkz034.

    Article  CAS  PubMed  Google Scholar 

  30. Lu Z, Deng F, He R, et al. A pass-through solid-phase extraction clean-up method for the determination of 11 quinolone antibiotics in chicken meat and egg samples using ultra-performance liquid chromatography tandem mass spectrometry. Microchem J. 2019;151:104213. https://doi.org/10.1016/j.microc.2019.104213.

    Article  CAS  Google Scholar 

  31. Ye SB, Huang Y, Lin DY. QuEChERS sample pre-processing with UPLC–MS/MS: a method for detecting 19 quinolone-based veterinary drugs in goat’s milk. Food Chem. 2022;373:131466. https://doi.org/10.1016/j.foodchem.2021.131466.

    Article  CAS  Google Scholar 

  32. Daoxia L, Lijuan H, Hui G, et al. Matrix effects and compensation measures of quinolones detection in animal derived food by HPLC-MS/MS. Zhongguo Shipin Weisheng Zazhi. 2022;34(4):693–9. https://doi.org/10.13590/j.cjfh.2022.04.010.

    Article  Google Scholar 

  33. Li YL, Hao XL, Ji BQ, et al. Rapid determination of 19 quinolone residues in spiked fish and pig muscle by high-performance liquid chromatography (HPLC) tandem mass spectrometry. Food Addit Contam A. 2009;26(3):306–13. https://doi.org/10.1080/02652030802484851.

    Article  CAS  Google Scholar 

  34. Al-Shaalan NH, Nasr JJ, Shalan S, et al. Inspection of antimicrobial remains in bovine milk in Egypt and Saudi Arabia employing a bacteriological test kit and HPLC-MS/MS with estimation of risk to human health. Plos one. 2022;17(4):e0267717. https://doi.org/10.1371/journal.pone.0267717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choudhury H, Gorain B, Paul A, et al. Development and validation of an LC-MS/MS-ESI method for comparative pharmacokinetic study of ciprofloxacin in healthy male subjects. Drug Research. 2017;11(02):94–102. https://doi.org/10.1055/s-0042-116593.

    Article  CAS  Google Scholar 

  36. Wang Y, Liu Z, Ren J, et al. Development of a method for the analysis of multiclass antibiotic residues in milk using QuEChERS and liquid chromatography–tandem mass spectrometry. Foodborne Pathog Dis. 2015;12(8):693–703. https://doi.org/10.1089/fpd.2014.1916.

    Article  CAS  PubMed  Google Scholar 

  37. Momotko M, Łuczak J, Przyjazny A, et al. A natural deep eutectic solvent-protonated L-proline-xylitol-based stationary phase for gas chromatography. J Chromatogr A. 2022;1676:463238. https://doi.org/10.1016/j.chroma.2022.463238.

    Article  CAS  PubMed  Google Scholar 

  38. Uclés S, Lozano A, Sosa A, Vázquez PP, Valverde A, Fernández-Alba AR. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta. 2017;174:72–81. https://doi.org/10.1016/j.talanta.2017.05.068.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang M, Zhang X, Liu Y, Wu K, Liang B. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environ Sci Pollut Res. 2021;28:35537–63. https://doi.org/10.1007/s11356-021-14485-2.

    Article  CAS  Google Scholar 

  40. Achkar TE, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environ Chem Lett. 2021;19:3397–408. https://doi.org/10.1007/s10311-021-01225-8.

    Article  CAS  Google Scholar 

  41. Momotko M, Łuczak J, Przyjazny A, et al. First deep eutectic solvent-based (DES) stationary phase for gas chromatography and future perspectives for DES application in separation techniques. J Chromatogr A. 2021;1635:461701. https://doi.org/10.1016/j.chroma.2020.461701.

    Article  CAS  PubMed  Google Scholar 

  42. Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein MJ, et al. Deep eutectic solvents: a review of fundamentals and applications. Chem Rev. 2020;121(3):1232–85. https://doi.org/10.1021/acs.chemrev.0c00385.

    Article  CAS  PubMed  Google Scholar 

  43. Sereshti H, Zarei-Hosseinabadi M, Soltani S, Taghizadeh M. Green vortex-assisted emulsification microextraction using a ternary deep eutectic solvent for extraction of tetracyclines in infant formulas. Food Chem. 2022;396:1–8. https://doi.org/10.1016/j.foodchem.2022.133743.

    Article  CAS  Google Scholar 

  44. Sereshti H, Karami F, Nouri N. A green dispersive liquid-liquid microextraction based on deep eutectic solvents doped with β-cyclodextrin: application for determination of tetracyclines in water samples. Microchem J. 2021;163:105914. https://doi.org/10.1016/j.microc.2020.105914.

    Article  CAS  Google Scholar 

  45. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC-Trend Anal Chem. 2012;37:61–72. https://doi.org/10.1016/j.trac.2012.03.013.

    Article  CAS  Google Scholar 

  46. Marchel M, Cieśliński H, Boczkaj G. Deep eutectic solvents microbial toxicity: current state of art and critical evaluation of testing methods. J Hazard Mater. 2022;425:127963. https://doi.org/10.1016/j.jhazmat.2021.127963.

    Article  CAS  PubMed  Google Scholar 

  47. Liang N, Huang P, Hou X, Li Z, Tao L, Zhao L. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples. Anal Bioanal Chem. 2016;408:1701–13. https://doi.org/10.1007/s00216-015-9284-z.

    Article  CAS  PubMed  Google Scholar 

  48. Yu K, Yue ME, Xu J, Jiang TF. Determination of fluoroquinolones in milk, honey and water samples by salting out-assisted dispersive liquid-liquid microextraction based on deep eutectic solvent combined with MECC. Food Chem. 2020;332:127371. https://doi.org/10.1016/j.foodchem.2020.127371.

    Article  CAS  PubMed  Google Scholar 

  49. Li K, ** Y, Jung D, Park K, Kim H, Lee J. In situ formation of thymol-based hydrophobic deep eutectic solvents: application to antibiotics analysis in surface water based on liquid-liquid microextraction followed by liquid chromatography. J Chromatogr A. 2020;1614:460730. https://doi.org/10.1016/j.chroma.2019.460730.

    Article  CAS  PubMed  Google Scholar 

  50. Wang Y, Zhao S, Yang L, Liu C, Wang H, Li D, et al. Determination of twele quinolones in honey by vortex-assisted dispersive liquid liquid microextraction performed in syringe based on deep eutectic solvent combine with ultra performance liquid chromatography-mass spectrometry. Eur Food Res Technol. 2022;248(1):263–72. https://doi.org/10.1007/s00217-021-03878-9.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No.32102082) and the Knowledge Innovation Program of Wuhan-Basic Research (No. 2022020801020416).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Liu or Jun Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 600 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Su, X., Yao, Y. et al. Preparation of a hydrophobic deep eutectic solvent and its application in the detection of quinolone residues in cattle urine. Anal Bioanal Chem 415, 3581–3592 (2023). https://doi.org/10.1007/s00216-023-04749-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04749-w

Keywords

Navigation