Log in

Supercritical fluid chromatography coupled to high-resolution tandem mass spectrometry: an innovative one-run method for the comprehensive assessment of chocolate quality and authenticity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To assess chocolate quality and authenticity comprehensively, a combination of various analytical procedures is involved, thereby making the process time-consuming and costly. Thus, we investigated the potential of ultra-high performance supercritical fluid chromatography coupled to quadrupole-time of flight mass spectrometry (UHPSFC-QTOF-MS) as an alternative to “classic” methods. By combining hexane and aqueous extracts from sequential extraction, a single 8-min analytical run enabled us (i) to determine cocoa butter equivalents (CBEs) and milk fat content based on the detection of selected triacylglycerols, (ii) to calculate dry non-fat cocoa solids based on determined theobromine and caffeine content, and (iii) to profile contained sugars. To obtain the most comprehensive information about sample composition, the MS method comprised a full MS scan for non-target screening and several time-scheduled targeted MS/MS functions (“parallel reaction monitoring”) optimized according to the possible concentration ranges of the analytes. For 40 different chocolate samples, our results and those obtained by using standard methods (LC-UV for non-fat cocoa solids, and GC-FID for CBEs) were in good agreement. Compared to the conventional approach for chocolate quality and authenticity control, the presented SFC-MS method is a fast, cost-effective, and efficient alternative, and only samples suspicious for the presence of CBE should be referred to the standard GC-FID method for exact CBE quantification. In the study, also some challenges offered by SFC-MS have been addressed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABPR:

Automated back pressure regulator

APCI:

Atmospheric pressure ionization

AmF:

Ammonium formate

BPI:

Base peak intensity

CB:

Cocoa butter

CBE:

Cocoa butter equivalent

Cf:

Caffeine

CRM:

Certified reference material

DNCS:

Dry non-fat cocoa solids

ELSD:

Evaporative light-scattering detector

ESI:

Electrospray

FA:

Formic acid

FID:

Flame ionization detector

GC:

Gas chromatography

HP:

High performance

HR:

High resolution

IpOH:

Propan-2-ol

Lac:

Lactose

LC:

Liquid chromatography

LOQ:

Limit of quantification

MeCN:

Acetonitrile

MeOH:

Methanol

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NARP:

Non-aqueous reversed phase

PLS:

1-Palmitoyl-2-linoleoyl-3-stearoyl-glycerol

PO:

Palmitoyl-oleoyl-glycerol

POO:

1,2-Dioleoyl-3-palmitoyl-glycerol

POP:

1,3-Dipalmitoyl-2-oleoyl-glycerol

POS:

1-Palmitoyl-2-oleoyl-3-stearoyl-glycerol

PSB:

1-Palmitoyl-2-stearoyl-3-butyryl-glycerol

QTOF:

Quadrupole-time of flight

RID:

Refractometric detector

RP:

Reversed phase

RSD:

Relative standard deviation

SFC:

Supercritical fluid chromatography

SLS:

1,3-Distearoyl-2-linoleoyl-glycerol

SO:

Oleoyl-stearoyl-glycerol

SOO:

1,2-Dioleoyl-3-stearoyl-glycerol

SOS:

1,3-Distearoyl-2-oleoyl-glycerol

Suc:

Sucrose

TAG:

Triacylglycerol

Tb:

Theobromine

TDCS:

Total dry cocoa solids

TPDG:

1,2,3-Tripentadecanoyl-glycerol

UHP:

Ultra-high performance

UV:

Ultraviolet

References

  1. Smith DF. Benefits of flavanol-rich cocoa-derived products for mental well-being: a review. J Funct Foods. 2013;5:10–5. https://doi.org/10.1016/j.jff.2012.09.002.

    Article  CAS  Google Scholar 

  2. Franco R, Oñatibia-Astibia A, Martínez-Pinilla E. Health benefits of methylxanthines in cacao and chocolate. Nutrients. 2013;5:4159–73. https://doi.org/10.3390/nu5104159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Latham LS, Hensen ZK, Minor DS. Chocolate—guilty pleasure or healthy supplement? J Clin Hypertens. 2014;16:101–6. https://doi.org/10.1111/jch.12223.

    Article  Google Scholar 

  4. Joint FAO/WHO Codex Alimentarius Commission. Standard for chocolate and chocolate products. CXS 87-1981. Rome: World Health Organization: Food and Agriculture Organization of the United Nations; 2016.

  5. Directive 2000/36/EC of the European Parliament and of the Council of 23 June 2000 relating to cocoa and chocolate products intended for human consumption. Off J 2000;L197:19–25

  6. Squicciarini MP, Swinnen J, editors. The economics of chocolate. New York, USA: Oxford University Press; 2016.

    Google Scholar 

  7. Beckett ST. The Science of Chocolate. 2nd ed. Cambridge, UK: The Royal Society of Chemistry; 2008.

    Google Scholar 

  8. Lipp M, Anklam E. Review of cocoa butter and alternative fats for use in chocolate - part A. Compositional data Food Chem. 1998;62:73–97. https://doi.org/10.1016/S0308-8146(97)00160-X.

    Article  CAS  Google Scholar 

  9. Bohačenko I, Kopicová Z, Pinkrová J. Chocolate authenticity control concerning compliance with the conditions for adding cocoa butter equivalents as laid down by directive 2000/36 EC. Czech J Food Sci. 2005;23:27–35. https://doi.org/10.17221/3368-CJFS.

    Article  Google Scholar 

  10. Beckett ST, editor. Industrial Chocolate Manufacture and Use. 4th ed. Oxford: Blackwell Publishing Ltd; 2009. https://doi.org/10.1002/9781444301588.

  11. Aidoo RP, Depypere F, Afoakwa EO, Dewettinck K. Industrial manufacture of sugar-free chocolates – applicability of alternative sweeteners and carbohydrate polymers as raw materials in product development. Trends Food Sci Technol. 2013;32:84–96. https://doi.org/10.1016/j.tifs.2013.05.008.

    Article  CAS  Google Scholar 

  12. Richards A, Wailes B. Estimation of fat-free cocoa solids in chocolate and cocoa products—global survey of typical concentrations of theobromine and caffeine determined by HPLC. J Assoc Public Anal. 2012;40:1–12.

    Google Scholar 

  13. Matissek R. Evaluation of xanthine derivatives in chocolate–nutritional and chemical aspects. Z Für Leb -Forsch A. 1997;205:175–84. https://doi.org/10.1007/s002170050148.

    Article  CAS  Google Scholar 

  14. Latimer GW, editor. Official methods of analysis of AOAC International. 21st ed. Arlington, VA: Association of Official Analytical Chemists International; 2019.

  15. Padley FB, Timms HP. The determination of cocoa butter equivalents in chocolate. J Am Oil Chem Soc. 1980;57:286–93. https://doi.org/10.1007/BF02662209.

    Article  CAS  Google Scholar 

  16. Fincke A. Moglichkeiten and Grenzen einfacher gaschromatographischer Triglyceridanalysen zum Nachweis fremder Fette in Kakaobutter und Schokoladefetten. 2. Mitteilung Verteilung der nach C-Zahlen klassifizierten Triglyceride in Kakaobutter. Dtsch Lebensm Rundsch. 1980;76:187–92.

    CAS  Google Scholar 

  17. Ulberth F, Buchgraber M. Analytical platforms to assess the authenticity of cocoa butter. Eur J Lipid Sci Technol. 2003;105:32–42. https://doi.org/10.1002/ejlt.200390003.

    Article  CAS  Google Scholar 

  18. Buchgraber M, Ulberth F, Anklam E. Method validation for detection and quantification of cocoa butter equivalents in cocoa butter and plain chocolate. J AOAC Int. 2004;87:1164–72. https://doi.org/10.1093/jaoac/87.5.1164.

    Article  CAS  PubMed  Google Scholar 

  19. Buchgraber M, Senaldi Ch, Ulberth F, Anklam E. Detection and quantification of cocoa butter equivalents in cooca butter and plain chocolate by gas liquid chromatography of triacylglycerols. J AOAC Int. 2004;87:1153–63. https://doi.org/10.1093/jaoac/87.5.1153.

    Article  CAS  PubMed  Google Scholar 

  20. International Organization for Standardization. Cocoa butter equivalents in cocoa butter and plain chocolate - Part 1: Detection of the presence of cocoa butter equivalents (ISO Standard No. 23275–1); 2006

  21. International Organization for Standardization. Cocoa butter equivalents in cocoa butter and plain chocolate - Part 2: Quantification of cocoa butter equivalents (ISO Standard No. 23275–2); 2006

  22. International Organization for Standardization. Determination of cocoa butter equivalents in milk chocolate (ISO Standard No. 11053); 2009

  23. Kalo PJ, Kemppinen A. Regiospecific analysis of TAGs using chromatography, MS, and chromatography-MS. Eur J Lipid Sci Technol 114:399–411. https://doi.org/10.1002/ejlt.201100367

  24. Neff WE. Byrdwell WmC, List GR (2001) Triacylglycerol structures of food fats high in saturated acids by HPLC and mass spectrometry. J Liq Chromatogr Relat Technol. 2012;24:837–54. https://doi.org/10.1081/JLC-100103414.

    Article  Google Scholar 

  25. Kotnik D, Smidovnik A, Jazbec-Križman P, Križman M, Prošek M. Overview of the development and application of the hyphenated techniques in nutritional analysis. Acta Chim Slov. 2011;58:203–11.

    CAS  PubMed  Google Scholar 

  26. Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J. Green chromatography. J Chromatogr A. 2013;1307:1–20. https://doi.org/10.1016/j.chroma.2013.07.099.

    Article  CAS  PubMed  Google Scholar 

  27. Tarafder A. Metamorphosis of supercritical fluid chromatography to SFC: an overview. TrAC Trends Anal Chem. 2016;81:3–10. https://doi.org/10.1016/j.trac.2016.01.002.

    Article  CAS  Google Scholar 

  28. Desfontaine V, Losacco GL, Gagnebin Y, Pezzatti J, Farrell WP, González-Ruiz V, Rudaz S, Veuthey J-L, Guillarme D. Applicability of supercritical fluid chromatography mass spectrometry to metabolomics I Optimization of separation conditions for the simultaneous analysis of hydrophilic and lipophilic substances. J Chromatogr A. 2018;1562:96–107. https://doi.org/10.1016/j.chroma.2018.05.055.

    Article  CAS  PubMed  Google Scholar 

  29. Si-Hung L, Bamba T. Current state and future perspectives of supercritical fluid chromatography. TrAC Trends Anal Chem. 2022;149: 116550. https://doi.org/10.1016/j.trac.2022.116550.

    Article  CAS  Google Scholar 

  30. Andri B, Dispas A, Klinkenberg R, Streel B, Marini RD, Ziémons E, Hubert Ph. Is supercritical fluid chromatography hyphenated to mass spectrometry suitable for the quality control of vitamin D3 oily formulations? J Chromatogr A. 2017;1515:209–17. https://doi.org/10.1016/j.chroma.2017.07.057.

    Article  CAS  PubMed  Google Scholar 

  31. Donato P, Inferrera V, Sciarrone D, Mondello L. Supercritical fluid chromatography for lipid analysis in foodstuffs. J Sep Sci. 2017;40:361–82. https://doi.org/10.1002/jssc.201600936.

    Article  CAS  PubMed  Google Scholar 

  32. Losacco GL, Rentsch M, Plachká K, Monteau F, Bichon E, Bizec BL, Nováková L, Nicoli R, Kuuranne T, Veuthey J-L, Guillarme D. Ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry for antido** analyses: assessment of the inter-laboratory reproducibility with urine samples. Anal Sci Adv. 2021;2:68–75. https://doi.org/10.1002/ansa.202000131.

    Article  CAS  Google Scholar 

  33. Dispas A, Marini R, Desfontaine V, Veuthey J-L, Kotoni D, Losacco LG, Clarke A, Muscat Galea C, Mangelings D, Jocher BM, Regalado EL, Plachká K, Nováková L, Wuyts B, François I, Gray M, Aubin AJ, Tarafder A, Cazes M, Desvignes C, Villemet L, Sarrut M, Raimbault A, Lemasson E, Lesellier E, West C, Leek T, Wong M, Dai L, Zhang K, Grand-Guillaume Perrenoud A, Brunelli C, Hennig P, Bertin S, Mauge F, Da Costa N, Farrell WP, Hill M, Desphande N, Grangrade M, Sadaphule S, Yadav R, Rane S, Shringare S, Iguiniz M, Heinisch S, Lefevre J, Corbel E, Roques N, Heyden YV, Guillarme D, Hubert P. First inter-laboratory study of a supercritical fluid chromatography method for the determination of pharmaceutical impurities. J Pharm Biomed Anal. 2018;161:414–24. https://doi.org/10.1016/j.jpba.2018.08.042.

    Article  CAS  PubMed  Google Scholar 

  34. Perrenoud AG-G, Veuthey J-L, Guillarme D. Coupling state-of-the-art supercritical fluid chromatography and mass spectrometry: from hyphenation interface optimization to high sensitivity analysis of pharmaceutical compounds. J Chromatogr A. 2014;1339:174–84. https://doi.org/10.1016/j.chroma.2014.03.006.

    Article  CAS  Google Scholar 

  35. Guillarme D, Desfontaine V, Heinisch S, Veuthey J-L. What are the current solutions for interfacing supercritical fluid chromatography and mass spectrometry? J Chromatogr B. 2018;1083:160–70. https://doi.org/10.1016/j.jchromb.2018.03.010.

    Article  CAS  Google Scholar 

  36. Tu A, Du Z, Qu S. Rapid profiling of triacylglycerols for identifying authenticity of edible oils using supercritical fluid chromatography-quadruple time-of-flight mass spectrometry combined with chemometric tools. Anal Methods. 2016;8:4226–38. https://doi.org/10.1039/C6AY00970K.

    Article  CAS  Google Scholar 

  37. Gao B, Luo Y, Lu W, Liu J, Zhang Y, Yu L (Lucy). Triacylglycerol compositions of sunflower, corn and soybean oils examined with supercritical CO 2 ultra-performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry. Food Chem 2017;218:569–574. https://doi.org/10.1016/j.foodchem.2016.09.099

  38. Ogawa T, Izumi Y, Kusumoto K, Fukusaki E, Bamba T. Wide target analysis of acylglycerols in miso (Japanese fermented soybean paste) by supercritical fluid chromatography coupled with triple quadrupole mass spectrometry and the analysis of the correlation between taste and both acylglycerols and free fatty acids. Rapid Commun Mass Spectrom. 2017;31:928–36. https://doi.org/10.1002/rcm.7862.

    Article  CAS  PubMed  Google Scholar 

  39. Berger TA. Supercritical fluid chromatography: Primer. USA: Agilent Technologies, Inc.; 2015.

    Google Scholar 

  40. Salvador A, Herbreteau B, Lafosse M, Dreux M. Subcritical fluid chromatography of monosaccharides and polyols using silica and trimethylsilyl columns. J Chromatogr A. 1997;785:195–204. https://doi.org/10.1016/S0021-9673(97)00392-0.

    Article  CAS  Google Scholar 

  41. Lafosse M, Herbreteau B, Morin-Allory L. Supercritical fluid chromatography of carbohydrates. J Chromatogr A. 1996;720:61–73. https://doi.org/10.1016/0021-9673(95)00309-6.

    Article  CAS  Google Scholar 

  42. Sirbu D, Corno M, Ullrich MS, Kuhnert N. Characterization of triacylglycerols in unfermented cocoa beans by HPLC-ESI mass spectrometry. Food Chem. 2018;254:232–40. https://doi.org/10.1016/j.foodchem.2018.01.194.

    Article  CAS  PubMed  Google Scholar 

  43. Luo Y, Zhang Y, Yuan F, Gao B, Wang Z, Yu L (Lucy). Triacylglycerols composition analysis of olive oils by ultra-performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry. Int J Food Sci Technol 2019;54:871–879. https://doi.org/10.1111/ijfs.14008

  44. Holčapek M, Lísa M, Jandera P, Kabátová N. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J Sep Sci. 2005;28:1315–33. https://doi.org/10.1002/jssc.200500088.

    Article  CAS  PubMed  Google Scholar 

  45. Li M, Butka E, Wang X. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans. Sci Rep. 2015;4:6581. https://doi.org/10.1038/srep06581.

    Article  CAS  Google Scholar 

  46. Lesellier E, West C. The many faces of packed column supercritical fluid chromatography – a critical review. J Chromatogr A. 2015;1382:2–46. https://doi.org/10.1016/j.chroma.2014.12.083.

    Article  CAS  PubMed  Google Scholar 

  47. Desfontaine V, Tarafder A, Hill J, Fairchild J, Grand-Guillaume Perrenoud A, Veuthey J-L, Guillarme D. A systematic investigation of sample diluents in modern supercritical fluid chromatography. J Chromatogr A. 2017;1511:122–31. https://doi.org/10.1016/j.chroma.2017.06.075.

    Article  CAS  PubMed  Google Scholar 

  48. Akbal L, Hopfgartner G. Effects of liquid post-column addition in electrospray ionization performance in supercritical fluid chromatography–mass spectrometry. J Chromatogr A. 2017;1517:176–84. https://doi.org/10.1016/j.chroma.2017.08.044.

    Article  CAS  PubMed  Google Scholar 

  49. Petruzziello F, Grand-Guillaume Perrenoud A, Thorimbert A, Fogwill M, Rezzi S. Quantitative profiling of endogenous fat-soluble vitamins and carotenoids in human plasma using an improved UHPSFC-ESI-MS interface. Anal Chem. 2017;89:7615–22. https://doi.org/10.1021/acs.analchem.7b01476.

    Article  CAS  PubMed  Google Scholar 

  50. Taguchi K, Fukusaki E, Bamba T. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. J Chromatogr A. 2014;1362:270–7. https://doi.org/10.1016/j.chroma.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  51. Schilling B, MacLean B, Held JM, Sahu AK, Rardin MJ, Sorensen DJ, Peters T, Wolfe AJ, Hunter CL, MacCoss MJ, Gibson BW. Multiplexed, scheduled, high-resolution parallel reaction monitoring on a full scan QqTOF instrument with integrated data-dependent and targeted mass spectrometric workflows. Anal Chem. 2015;87:10222–9. https://doi.org/10.1021/acs.analchem.5b02983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou J, Liu C, Si D, Jia B, Zhong L, Yin Y. Workflow development for targeted lipidomic quantification using parallel reaction monitoring on a quadrupole-time of flight mass spectrometry. Anal Chim Acta. 2017;972:62–72. https://doi.org/10.1016/j.aca.2017.04.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by METROFOOD-CZ research infrastructure project (MEYS Grant No: LM2018100) including access to its facilities.

Author information

Authors and Affiliations

Authors

Contributions

Michaela Rektorisova: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, project administration; Vojtech Hrbek: methodology and writing—review and editing; Monika Tomaniova: resources, writing—review and editing, and funding acquisition; Petr Cuhra: formal analysis and resources; Jana Hajslova: conceptualization, resources, writing—review and editing, supervision, and funding acquisition.

Corresponding author

Correspondence to Jana Hajslova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2728 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rektorisova, M., Hrbek, V., Tomaniova, M. et al. Supercritical fluid chromatography coupled to high-resolution tandem mass spectrometry: an innovative one-run method for the comprehensive assessment of chocolate quality and authenticity. Anal Bioanal Chem 414, 6825–6840 (2022). https://doi.org/10.1007/s00216-022-04246-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04246-6

Keywords

Navigation