Log in

A novel analytical approach for the determination of ethylene-thiourea and propylene-thiourea in vegetal foodstuffs by high-performance liquid chromatography hyphenated to inductively coupled plasma-tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study reports a novel analytical approach for the simultaneous determination of ethylene-thiourea (ETU) and propylene-thiourea (PTU) in fruits and vegetables by (reverse phase) high-performance liquid chromatography (HPLC) coupled to inductively coupled plasma-tandem mass spectrometry (ICP-QQQMS or ICP-MS/MS). A baseline separation of ETU and PTU was achieved in less than 5 min. A robust method validation by using the accuracy profile approach was performed by carrying out four measurement series in duplicate at six different levels over a timespan of 4 weeks (different days). The recovery factors ranged from 87 to 101% for ETU and from 98 to 99% for PTU (depending on the spiking level). The coefficient of variation in terms of repeatability (CVr) ranged from 1 to 4.7% for ETU and from 1.8 to 3.9% for PTU (depending also on the analyte level) while the coefficient of variation in terms of intermediate reproducibility (CVR) ranged from 3.4 to 10% for ETU and from 1.8 to 10.8% for PTU. The limit of quantification was 0.022 mg kg−1 (wet weight) for ETU and 0.010 mg kg−1 (ww) for PTU. This novel approach was proved to be highly robust and suitable for the determination of ETU and PTU in foodstuffs of vegetal origin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. John J. Brown, Handbook of Pesticide Toxicology, Vol. 1, 2, and 3. Am Entomol. 1991;37(4):244

  2. Caballero B, Finglas P, Toldrá F. Encyclopedia of food and health. Elsevier Science; 2015. Disponible sur: https://books.google.fr/books?id=FdG2AQAACAAJ. Accessed 1 Aug 2023.

  3. World Health Organization, International Programme on Chemical Safety & WHO Task Group on Environmental Health Criteria for Dithiocarbamate Pesticides, Ethylenethiourea and Propylenethiourea. Dithiocarbamate pesticides, ethylenethiourea, and propylenethiourea : a general introduction / published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. World Health Organization. 1988. https://iris.who.int/handle/10665/39117

  4. Chung SW, Wong WW. Chromatographic analysis of dithiocarbamate residues and their metabolites in foods employed in dietary exposure studies—a review. Food Addit Contam Part A. 2022;39(10):1731–43.

    Article  CAS  Google Scholar 

  5. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO

  6. Stadler K, Li X, Liu B, Bao W, Wang K, Lehmler HJ. Systematic review of human biomonitoring studies of ethylenethiourea, a urinary biomarker for exposure to dithiocarbamate fungicides. Environ Pollut. 2022;292:118419.

    Article  PubMed  CAS  Google Scholar 

  7. Li Y, Wang X, McKenzie JF, Mannetje A’ t, Cheng S, He C, et al. Pesticide exposure in New Zealand school-aged children: urinary concentrations of biomarkers and assessment of determinants. Environ Int. 2022;163:107206.

    Article  PubMed  Google Scholar 

  8. Crnogorac G, Schwack W. Residue analysis of dithiocarbamate fungicides. TrAC Trends Anal Chem. 2009;28(1):40–50.

    Article  CAS  Google Scholar 

  9. Tran K, Mactal LP, Cromer MR, Vocque RH, Smith RE. Development and validation of ethylenethiourea determination in foods using methanol-based extraction, solid-phase extraction cleanup and LC–MS/MS. Food Chem. 2013;140(1):340–2.

    Article  PubMed  CAS  Google Scholar 

  10. Ripollés C, Sancho JV, López FJ, Hernández F. Liquid chromatography coupled to tandem mass spectrometry for the residue determination of ethylenethiourea (ETU) and propylenethiourea (PTU) in water. J Chromatogr A. 2012;1243:53–61.

    Article  PubMed  Google Scholar 

  11. López-Fernández O, Rial-Otero R, Cid A, Simal-Gándara J. Combined determination and confirmation of ethylenethiourea and propylenethiourea residues in fruits at low levels of detection. Food Chem. 2014;145:1002–10.

    Article  PubMed  Google Scholar 

  12. Bonnechère A, Hanot V, Van Loco J. A rapid and environmental friendly determination of the dithiocarbamate metabolites ethylenethiourea and propylenethiourea in fruit and vegetables by ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2011;1218(29):4627–31.

    Article  PubMed  Google Scholar 

  13. Lemes VRR, Martins-Júnior HA, de Souza SVC, Colacioppo S. Ethylenethiourea in fruits: optimization and in-house validation of a method by liquid chromatography tandem mass spectrometry, occurrence and dietary exposure assessment. Food Control. 2014;42:321–8.

    Article  CAS  Google Scholar 

  14. Giner Martínez-Sierra J, Galilea San Blas O, MarchanteGayón JM, García Alonso JI. Sulfur analysis by inductively coupled plasma-mass spectrometry: a review. Spectrochim Acta Part B At Spectrosc. 2015;108:35–52.

    Article  Google Scholar 

  15. La** B, Braeuer S, Goessler W. Parallel and comparative non-targeted metabolomic speciation analysis of metalloids and their non-metal analogues by HPLC-ICPMS/MS in mushrooms. Metallomics. 2021;13(8):mfab047.

    Article  PubMed  Google Scholar 

  16. La** B, Goessler W. Exploring the sulfur species in wine by HPLC-ICPMS/MS. Anal Chim Acta. 2019;1092:1–8.

    Article  PubMed  CAS  Google Scholar 

  17. Christopher SJ, Ellisor DL, Davis WC. Investigating the feasibility of ICP-MS/MS for differentiating NIST salmon reference materials through determination of Sr and S isotope ratios. Talanta. 2021;231:122363.

    Article  PubMed  CAS  Google Scholar 

  18. Balcaen L, Woods G, Resano M, Vanhaecke F. Accurate determination of S in organic matrices using isotope dilution ICP-MS/MS. J Anal At Spectrom. 2013;28(1):33–9.

    Article  CAS  Google Scholar 

  19. Raab A, Ronzan M, Feldmann J. Sulphur fertilization influences the sulphur species composition in Allium sativum: sulphomics using HPLC-ICPMS/MS-ESI-MS/MS†. Metallomics. 2017;9(10):1429–38.

    Article  PubMed  CAS  Google Scholar 

  20. Amais RS, Long SE, Nóbrega JA, Christopher SJ. Determination of trace sulfur in biodiesel and diesel standard reference materials by isotope dilution sector field inductively coupled plasma mass spectrometry. Anal Chim Acta. 2014;806:91–6.

    Article  PubMed  CAS  Google Scholar 

  21. Greulich K, Alder L. Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS. Anal Bioanal Chem. 2008;391:183–97.

    Article  PubMed  CAS  Google Scholar 

  22. Alder L, Greulich K, Kempe G, Vieth B. Residue analysis of 500 high priority pesticides: better by GC–MS or LC–MS/MS? Mass Spectrom Rev. 2006;25(6):838–65.

    Article  PubMed  CAS  Google Scholar 

  23. Payá P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, et al. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal Bioanal Chem. 2007;389:1697–714.

    Article  PubMed  Google Scholar 

  24. Pang GF, Fan CL, Liu YM, Cao YZ, Zhang JJ, Li XM, et al. Determination of residues of 446 pesticides in fruits and vegetables by three-cartridge solid-phase extractiongas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. J AOAC Int. 2006;89(3):740–71.

    Article  PubMed  CAS  Google Scholar 

  25. AFNOR. Analyse des produits agricoles et alimentaires - Protocole de caractérisation en vue de la validation d’une méthode d’analyse quantitative par construction du profil d’exactitude. 2010. Disponible sur: https://www.boutique.afnor.org/fr-fr/norme/nf-v03110/analyse-des-produits-agricoles-et-alimentaires-protocole-de-caracterisation/fa159944/35346#AreasStoreProductsSummaryView. Accessed 1 Aug 2023.

  26. Mermet J, Granier G. Potential of accuracy profile for method validation in inductively coupled plasma spectrochemistry. Spectrochim Acta Part B At Spectrosc. 2012;76:214–20.

    Article  CAS  Google Scholar 

  27. Ghosn M, Chekri R, Mahfouz C, Khalaf G, Guérin T, Amara R, et al. Toward a routine methodology for speciation analysis of methylmercury in fishery products by HPLC coupled to ICP-MS following the validation based on the accuracy profile approach. Int J Environ Anal Chem. 2022;102(14):3343–56.

    Article  CAS  Google Scholar 

  28. Ghosn M, Mahfouz C, Chekri R, Ouddane B, Khalaf G, Guérin T, et al. Assessment of trace element contamination and bioaccumulation in algae (Ulva lactuca), bivalves (Spondylus spinosus) and shrimps (Marsupenaeus japonicus) from the Lebanese coast. Reg Stud Mar Sci. 2020;39: 101478.

    Google Scholar 

  29. Ribeiro M, Zephyr N, Silva J, Danion M, Guérin T, Castanheira I, et al. Assessment of the mercury-selenium antagonism in rainbow trout fish. Chemosphere. 2022;286: 131749.

    Article  PubMed  CAS  Google Scholar 

  30. Medina-Pastor P, Triacchini G, European Food Safety Authority (EFSA). The 2018 European Union report on pesticide residues in food. EFSA J. 2020;18(4):e06057.

    PubMed  PubMed Central  Google Scholar 

  31. Anastassiades M, Kolberg DI, Benkenstein A, Eichhorn E, Zechmann S, Mack D, Barth A. Quick method for the analysis of numerous highly polar pesticides in foods of plant origin via LC-MS/MS involving simultaneous extraction with methanol (QuPPe-method). EU reference laboratory for pesticides requiring single residue methods (EURL-SRM). CVUA, Stuttgart, Germany. 2015.

Download references

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753053.

Author information

Authors and Affiliations

Authors

Contributions

Ibtihel BenDhiab: data curation, formal analysis, investigation, methodology, validation, roles/writing—original, writing—review and editing. Alin C. Dirtu: conceptualization, data curation, formal analysis, funding acquisition, investigation, investigation, methodology, validation, writing—review and editing. Nathalie Marchond: formal analysis, methodology; thierry guérin: resources, writing—review and editing. Petru Jitaru: conceptualization, data curation, funding acquisition, investigation, methodology, project administration, resources, supervision, validation, roles/writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Petru Jitaru.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendhiab, I., Dirtu, A.C., Marchond, N. et al. A novel analytical approach for the determination of ethylene-thiourea and propylene-thiourea in vegetal foodstuffs by high-performance liquid chromatography hyphenated to inductively coupled plasma-tandem mass spectrometry. Anal Bioanal Chem 416, 431–438 (2024). https://doi.org/10.1007/s00216-023-05034-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05034-6

Keywords

Navigation