Log in

Simultaneous evaluation of multiple microarray surface chemistries through real-time interferometric imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface chemistry is a crucial aspect for microarray modality biosensor development. The immobilization capability of the functionalized surface is indeed a limiting factor for the final yield of the binding reaction. In this work, we were able to simultaneously compare the functionality of protein ligands that were locally immobilized on different polymers, while on the same solid support, therefore demonstrating a new way of multiplexing. Our goal was to investigate, in a single experiment, both the immobilization efficiency of a group of reactive polymers and the resulting affinity of the tethered molecules. This idea was demonstrated by spotting many reactive polymers on a Si/SiO2 chip and depositing the molecular probes on the spots immediately after. As a proof of concept, we focused on which polymers would better immobilize a model protein (α-Lactalbumin) and a peptide (LAC-1). We successfully showed that this protocol is applicable to proteins and peptides with a good efficiency. By means of real-time binding measurements performed with the interferometric reflectance imaging sensor (IRIS), local functionalization proved to be comparable to the classical flat coating solution. The final outcome highlights the multiplexing power of this method: first, it allows to characterize dozens of polymers at once. Secondly, it removes the limitation, related to coated surfaces, that only molecules with the same functional groups can be tethered to the same solid support. By applying this protocol, many types of molecules can be studied simultaneously and immobilization for each probe can be individually optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. MacBeath G. Protein microarrays and proteomics. Nat Genet. 2002;32(Suppl):526–32. https://doi.org/10.1038/ng1037.

    Article  CAS  PubMed  Google Scholar 

  2. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–70. https://doi.org/10.1126/science.270.5235.467.

    Article  CAS  PubMed  Google Scholar 

  3. Pirri G, Damin F, Chiari M, Bontempi E, Depero LE. Characterization of a polymeric adsorbed coating for DNA microarray glass slides. Anal Chem. 2004;76:1352–8. https://doi.org/10.1021/ac0352629.

    Article  CAS  PubMed  Google Scholar 

  4. Sola L, Damin F, Gagni P, Consonni R, Chiari M. Synthesis of clickable coating polymers by post-polymerization modification: application in microarray technology. Langmuir. 2016;32:10284–95. https://doi.org/10.1021/acs.langmuir.6b02816.

    Article  CAS  PubMed  Google Scholar 

  5. Zilio C, Sola L, Damin F, Faggioni L, Chiari M. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics. Biomed Microdevices. 2014;16:107–14. https://doi.org/10.1007/s10544-013-9810-8.

    Article  CAS  PubMed  Google Scholar 

  6. Sola L, Damin F, Chiari M. Array of multifunctional polymers for localized immobilization of biomolecules on microarray substrates. Anal Chim Acta. 2019;1047:188–96. https://doi.org/10.1016/j.aca.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  7. Daaboul GG, Vedula RS, Ahn S, Lopez CA, Reddington A, Ozkumur E, et al. LED-based interferometric reflectance imaging sensor for quantitative dynamic monitoring of biomolecular interactions. Biosens Bioelectron. 2011;26:2221–7. https://doi.org/10.1016/j.bios.2010.09.038.

    Article  CAS  PubMed  Google Scholar 

  8. Mammen M, Dahmann G, Whitesides GM. Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J Med Chem. 1995;38:4179–90. https://doi.org/10.1021/jm00021a007.

    Article  CAS  PubMed  Google Scholar 

  9. Landi F, Johansson CM, Campopiano DJ, Hulme AN. Synthesis and application of a new cleavable linker for “click”-based affinity chromatography. Org Biomol Chem. 2010;8:56–9. https://doi.org/10.1039/b916693a.

    Article  CAS  PubMed  Google Scholar 

  10. Sola L, Chiari M. Modulation of electroosmotic flow in capillary electrophoresis using functional polymer coatings. J Chromatogr A. 2012;1270:324–9. https://doi.org/10.1016/j.chroma.2012.10.039.

    Article  CAS  PubMed  Google Scholar 

  11. Sola L, Damin F, Cretich M, Chiari M. Novel polymeric coatings with tailored hydrophobicity to control spot size and morphology in DNA microarray. Sensors Actuators B Chem. 2016;231:412–22. https://doi.org/10.1016/j.snb.2016.03.049.

    Article  CAS  Google Scholar 

  12. Gori A, Cretich M, Vanna R, Sola L, Gagni P, Bruni G, et al. Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays. Anal Chim Acta. 2017;983:189–97. https://doi.org/10.1016/j.aca.2017.06.027.

    Article  CAS  PubMed  Google Scholar 

  13. Needham J, Lortlar Ünlü N, Ünlü MS. Interferometric reflectance imaging sensor (IRIS) for molecular kinetics with a low-cost, disposable fluidic cartridge. In: Fitzgerald J, Fenniri H, editors. Biomimetic sensing. Methods in Molecular Biology, volume 2027. New York, NY: Humana; 2019. p. 15–28.

    Google Scholar 

  14. Sevenler D, Ünlü MS. Numerical techniques for high-throughput reflectance interference biosensing. J Mod Opt. 2016;63:1115–20. https://doi.org/10.1080/09500340.2015.1117668.

    Article  Google Scholar 

  15. Chiari M, Cretich M, Damin F, Ceriotti L, Consonni R. New adsorbed coatings for capillary electrophoresis. Electrophoresis. 2000;21:909–16. https://doi.org/10.1002/(SICI)1522-2683(20000301)21:5<909::AID-ELPS909>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  16. Dommerholt J, Rutjes FPJT, van Delft FL. Strain-promoted 1,3-dipolar cycloaddition of cycloalkynes and organic azides. Top Curr Chem (Z). 2016;374:16. doi:10.1007/s41061-016-0016-4

  17. Singh S, Dubinsky-Davidchika IS, Kluger R. Strain-promoted azide–alkyne cycloaddition for protein–protein coupling in the formation of a bis-hemoglobin as a copper-free oxygen carrier. Org Biomol Chem. 2016;14:10011–7. https://doi.org/10.1039/C6OB01817C.

    Article  CAS  PubMed  Google Scholar 

  18. Platt GW, Damin F, Swann MJ, Metton I, Skorski G, Cretich M, et al. Allergen immobilisation and signal amplification by quantum dots for use in a biosensor assay of IgE in serum. Biosens Bioelectron. 2014;52:82–8. https://doi.org/10.1016/j.bios.2013.08.019.

    Article  CAS  PubMed  Google Scholar 

  19. Pearson’s Correlation Coefficient. In: Encyclopedia of Public Health. Kirch W, editor. Springer, Dordrecht; 2008. doi:10.1007/978-1-4020-5614-7

  20. Hochwallner H, Schulmeister U, Swoboda I, Focke-Tejkl M, Civaj V, Balic N, et al. Visualization of clustered IgE epitopes on α-lactalbumin. J Allergy Clin Immunol. 2010;125. https://doi.org/10.1016/j.jaci.2010.03.007.

    Article  Google Scholar 

  21. Gori A, Sola L, Gagni P, Bruni G, Liprino M, Peri C, et al. Screening complex biological samples with peptide microarrays: the favorable impact of probe orientation via chemoselective immobilization strategies on clickable polymeric coatings. Bioconjug Chem. 2016;27:2669–77. https://doi.org/10.1021/acs.bioconjchem.6b00426.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially funded by Regione Lombardia, project AMANDA (Abnormal Metabolic states, cellular stressors and NeuroDegenerative processes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Chiodi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

All authors have participated in conception and design, or analysis and interpretation of the data; drafting the article or revising it critically for important intellectual content; and approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or publishing venue.

Additional information

Published in the topical collection Advances in Direct Optical Detection with guest editors Antje J. Baeumner, Günter Gauglitz and Jiri Homola.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 99 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiodi, E., Sola, L., Brambilla, D. et al. Simultaneous evaluation of multiple microarray surface chemistries through real-time interferometric imaging. Anal Bioanal Chem 412, 3477–3487 (2020). https://doi.org/10.1007/s00216-019-02276-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02276-1

Keywords

Navigation