Log in

Gold nanoparticle-decorated fluorine-doped tin oxide substrate for sensitive label-free OIRD microarray chips

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Oblique incidence reflectance difference (OIRD) is an emerging technique enabling real-time and label-free detection of bio-affinity binding events on microarrays. The interfacial architecture of the microarray chip is critical to the performance of OIRD detection. In this work, a sensitive label-free OIRD microarray chip was developed by using gold nanoparticle-decorated fluorine-doped tin oxide (AuNPs-FTO) slides as a chip substrate. This AuNPs-FTO chip demonstrates a higher signal-to-noise ratio and improved sensitivity compared to that built on FTO glass, showing a detection limit of as low as 10 ng mL−1 for the model target, HRP-conjugated streptavidin. On-chip ELISA experiments and optical calculations suggest that the enhanced performance is not only due to the higher probe density enabling a high capture efficiency toward the target, but most importantly, the AuNP layer arouses optical interference to improve the intrinsic sensitivity of OIRD. This work provides an effective strategy for constructing OIRD-based microarray chips with enhanced sensitivity, and may help extend their practical applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li YK, Liu W, ** G, Niu Y, Chen YP, **e MX. Label-Free Sandwich Imaging Ellipsometry Immunosensor for Serological Detection of Procalcitonin. Anal Chem. 2018;90(13):8002–10.

    Article  CAS  PubMed  Google Scholar 

  2. Kong FY, Li WW, Wang JY, Wang W. UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis. Biosens Bioeletron. 2015;69:206–12.

    Article  CAS  Google Scholar 

  3. Graham DL, Ferreira HA, Freitas PP, Cabral JMS. High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors. Biosens Bioeletron. 2003;18(4):483–8.

    Article  CAS  Google Scholar 

  4. Aranda PR, Messina GA, Bertolino FA, Pereira SV, Baldo MAF, Raba J. Nanomaterials in fluorescent laser-based immunosensors: Review and applications. Microchem J. 2018;141:308–23.

    Article  CAS  Google Scholar 

  5. Zhao LX, Sun L, Chu XG. Chemiluminescence immunoassay. Trac-Trends Anal Chem. 2009;28(4):404–15.

    Article  CAS  Google Scholar 

  6. Wangoo N, Suri CR, Shekhawat G. Interaction of gold nanoparticles with protein: A spectroscopic study to monitor protein conformational changes. Appl Phys Lett. 2008;92(13): 133104.

    Article  Google Scholar 

  7. Jiang D, Zhao XN, Liu YN, Chen HB, Lv WL, Qian C, Liu XW. Label-Free Probing of Molecule Binding Kinetics Using Single-Particle Interferometric Imaging. Anal Chem. 2021;93(22):7965–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem. 2018;90(1):19–39.

    Article  CAS  PubMed  Google Scholar 

  9. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108(2):462–93.

    Article  CAS  PubMed  Google Scholar 

  10. Wark AW, Lee HJ, Qavi AJ, Corn RM. Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. Anal Chem. 2007;79(17):6697–701.

    Article  CAS  PubMed  Google Scholar 

  11. Lou PY, Wu Q, Zhang C, Wang ZQ, Song YJ. Enhanced magneto-optical Kerr effect via the synergistic effect of surface plasmon resonance and spin-orbit coupling in Au@Pt nanohybrid layers. J Phys D-Appl Phys. 2023;56(37):375001.

    Article  Google Scholar 

  12. Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004;16(19):1685–706.

    Article  CAS  Google Scholar 

  13. Landry JP, Zhu XD, Gregg JP. Label-free detection of microarrays of biomolecules by oblique-incidence reflectivity difference microscopy. Opt Lett. 2004;29(6):581–3.

    Article  CAS  PubMed  Google Scholar 

  14. Zhan HL, Zhao K, Lu HB, Zhu J, ** KJ, Yang GZ, Chen XH. In situ monitoring of water adsorption in active carbon using an oblique-incidence optical reflectance difference method. AIP Adv. 2017;7(9):095219.

    Article  Google Scholar 

  15. Liu S, Zhu JH, He LP, Dai J, Lu HB, Wu L, ** KJ, Yang GZ, Zhu H. Label-free, real-time detection of the dynamic processes of protein degradation using oblique-incidence reflectivity difference method. Appl Phys Lett. 2014;104(16):163701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu XD. Oblique-incidence optical reflectivity difference from a rough film of crystalline material. Phys Rev B. 2004;69(11):115407.

    Article  Google Scholar 

  17. Schwarzacher W, Gray J, Zhu XD. Oblique incidence reflectivity difference as an in situ probe of Co electrodeposition on polycrystalline Au. Electrochem Solid-State Lett. 2003;6(5):C73–6.

    Article  CAS  Google Scholar 

  18. Zhu XD. Symmetry consideration in zero loop-area Sagnac interferometry at oblique incidence for detecting magneto-optic Kerr effects. Rev Sci Instrum. 2017;88(8):083112.

    Article  CAS  PubMed  Google Scholar 

  19. Fei YY, Zhu XD, Liu LF, Lu HB, Chen ZH, Yang GZ. Oscillations in oblique-incidence optical reflection from a growth surface during layer-by-layer epitaxy. Phys Rev B. 2004;69(23):233405.

    Article  Google Scholar 

  20. Thomas P, Nabighian E, Bartelt MC, Fong CY, Zhu XD. An oblique-incidence optical reflectivity difference and LEED study of rare-gas growth on a lattice-mismatched metal substrate. Appl Phys A-Mater. 2004;79(1):131–7.

    Article  CAS  Google Scholar 

  21. Sun YS, Landry JP, Zhu XD. Evaluation of kinetics using label-free optical biosensors. Instrum Sci Technol. 2017;45(5):486–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai J, Li L, Wang JY, He LP, Lu HB, Ruan KC, ** KJ, Yang GZ. Label-free detection repeatability of protein microarrays by oblique-incidence reflectivity difference method. Sci China-Phys Mech. 2012;55(12):2347–50.

    Article  CAS  Google Scholar 

  23. Yuan K, Wang X, Lu H, Wen JA, Lu HB, Zhou YL, ** KJ, Yang GZ, Li W, Ruan KC. Label-free detection of hybridization of oligonucleotides by oblique-incidence reflectivity difference method. Sci China-Phys Mech. 2010;53(8):1434–7.

    Article  CAS  Google Scholar 

  24. Wang X, Lu H, Dai J, Wen JA, Yuan K, Lu HB, ** KJ, Zhou YL, Yang GZ. Real-time and label-free detection of biomolecular interactions by oblique-incidence reflectivity difference method. Chin Phys B. 2011;20(1):010704.

    Article  Google Scholar 

  25. He LP, Sun Y, Dai J, Wang JY, Lu HB, Wang SF, ** KJ, Zhou YL, Yang GZ. Label-free and real-time detection of interactional dynamic processes of rabbit IgG with different concentrations and goat anti-rabbit IgG by oblique-incidence reflectivity difference method. Acta Phys Sin. 2012;61(6):060703.

    Article  Google Scholar 

  26. Zhong CY, Li L, Chen N, Peng ZP, Hu WH. Spatially resolved electrochemical reversibility of a conducting polymer thin film imaged by oblique-incidence reflectivity difference. Chem Commun. 2020;56(13):1972–5.

    Article  CAS  Google Scholar 

  27. Feng ZH, Li XY, Fang CX, Li JY, Wang RF, Hu WH. Polystyrene microsphere monolayer assembled on glass slide for label-free OIRD immunoassay with enhanced sensitivity. Sens Actuators B Chem. 2023;379:133290.

    Article  CAS  Google Scholar 

  28. Wen J, Lu H, Wang X, Yuan K, Lu HB, Zhou YL, ** KJ, Yang GZ, Li W, Ruan KC. Detection of protein microarrays by oblique-incidence reflectivity difference technique. Sci China-Phys Mech. 2010;53(2):306–9.

    Article  CAS  Google Scholar 

  29. Fang CX, Li JY, Feng ZH, Li XY, Cheng M, Qiao Y, Hu WH. Spatiotemporal Map** of Extracellular Electron Transfer Flux in a Microbial Fuel Cell Using an Oblique Incident Reflectivity Difference Technique. Anal Chem. 2022;94(30):10841–9.

    Article  CAS  PubMed  Google Scholar 

  30. Chen N, Fang CX, Li XY, Hu WH. Mechanism and kinetics of cathodic corrosion of fluorine-doped tin oxide revealed by in situ oblique incident reflectivity difference. Electrochem Commun. 2021;127:107037.

    Article  CAS  Google Scholar 

  31. Fang CX, Zhong CY, Chen N, Yi LY, Li JY, Hu WH. Reusable OIRD Microarray Chips Based on a Bienzyme-Immobilized Polyaniline Nanowire Forest for Multiplexed Detection of Biological Small Molecules. Anal Chem. 2021;93(30):10697–703.

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Zhong CY, Feng BM, Chen N, Dai J, Lu HB, Hu WH. Optical imaging of the potential distribution at transparent electrode/solution interfaces. Chem Commun. 2020;56(33):4531–4.

    Article  CAS  Google Scholar 

  33. Li XY, Fang CX, Feng ZH, Li JY, Li Y, Hu WH. Label-free OIRD microarray chips with a nanostructured sensing interface: enhanced sensitivity and mechanism. Lab Chip. 2022;22(20):3910–9.

    Article  CAS  PubMed  Google Scholar 

  34. Li XY, Feng ZH, Fang CX, Wei YP, Ji DD, Hu WH. Non-fouling polymer brush grafted fluorine-doped tin oxide enabled optical and chemical enhancement for sensitive label-free antibody microarrays. Lab Chip. 2023;23(10):2477–86.

    Article  CAS  PubMed  Google Scholar 

  35. Zhong CY, Li L, Mei YH, Dai J, Hu WH, Lu ZS, Liu Y, Li CM, Lu HB. Chip architecture-enabled sensitivity enhancement of oblique-incidence reflectivity difference for label-free protein microarray detection. Sens Actuators B Chem. 2019;294:216–23.

    Article  CAS  Google Scholar 

  36. Bi S, Dong Y, Jia XQ, Chen M, Zhong H, Ji B. Self-assembled multifunctional DNA nanospheres for biosensing and drug delivery into specific target cells. Nanoscale. 2015;7(16):7361–7.

    Article  CAS  PubMed  Google Scholar 

  37. Asadchy VS, Guo C, Faniayeu IA, Fan S. Three-dimensional Random Dielectric Colloid Metamaterial with Giant Isotropic Optical Activity. Laser Photonics Rev. 2020;14(10):2000151.

    Article  CAS  Google Scholar 

  38. Cheng XR, Hau BYH, Endo T, Kerman K. Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens Bioeletron. 2014;53:513–8.

    Article  CAS  Google Scholar 

  39. Chen DQ, Zhao L, Hu WH. Protein immobilization and fluorescence quenching on polydopamine thin films. J Colloid Interface Sci. 2016;477:123–30.

    Article  CAS  PubMed  Google Scholar 

  40. Waite JH. Surface chemistry - Mussel power. Nat Mater. 2008;7(1):8–9.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang GP, Liu QY, Xu CL, Li BX. Uncovering Origin of Chirality of Gold Nanoparticles Prepared through the Conventional Citrate Reduction Method. Anal Chem. 2023;95(14):6107–14.

    Article  CAS  PubMed  Google Scholar 

  42. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee H, Rho J, Messersmith PB. Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings. Adv Mater. 2009;21(4):431–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Messersmith PB. Materials science - Multitasking in tissues and materials. Science. 2008;319(5871):1767–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ncibi MC, Sillanpää M. Mesoporous carbonaceous materials for single and simultaneous removal of organic pollutants: Activated carbons vs. carbon nanotubes. J Mol Liq. 2015;207:237–47.

    Article  CAS  Google Scholar 

  46. Sánchez-Martín J, Beltrán-Heredia J, Gibello-Pérez P. Adsorbent biopolymers from tannin extracts for water treatment. Chem Eng J. 2011;168(3):1241–7.

    Article  Google Scholar 

  47. Wang XJ, Hao Z, Olsen TR, Zhang WJ, Lin Q. Measurements of aptamer-protein binding kinetics using graphene field-effect transistors. Nanoscale. 2019;11(26):12573–81.

    Article  CAS  PubMed  Google Scholar 

  48. Berezhkovskii AM, Shvartsman SY. On the GFP-Based Analysis of Dynamic Concentration Profiles. Biophys J. 2014;106(3):L13–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao YL, Gaur G, Retterer ST, Laibinis PE, Weiss SM. Flow-Through Porous Silicon Membranes for Real-Time Label-Free Biosensing. Anal Chem. 2016;88(22):10940–8.

    Article  CAS  PubMed  Google Scholar 

  50. Markov DA, Swinney K, Bornhop DJ. Label-free molecular interaction determinations with nanoscale interferometry. J Am Chem Soc. 2004;126(50):16659–64.

    Article  CAS  PubMed  Google Scholar 

  51. Dourbash FA, Shestopalov AA, Rothberg LJ. Label-Free Immunoassay Using Droplet-Based Brewster’s Angle Straddle Interferometry. Anal Chem. 2021;93(10):4456–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work received financial support from National Natural Science Foundation of China (No. 22074125), Natural Science Foundation Project of CQ CSTC (cstc2021jcyj-msxmX1165), and The Innovation Platform for Academicians of Hainan Province.

Author information

Authors and Affiliations

Authors

Contributions

Yuda Ren: methodology; formal analysis; investigation; writing, original draft preparation. Meng Li: formal analysis and software. **aoyi Li: conceptualization; methodology. Jun Ye: investigation; project administration. Zhihao Feng: formal analysis; investigation; software. Wei Sun: conceptualization; funding acquisition; writing, review and editing. Weihua Hu: conceptualization; methodology; funding acquisition; writing, review and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Sun or Weihua Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.94 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Li, M., Li, X. et al. Gold nanoparticle-decorated fluorine-doped tin oxide substrate for sensitive label-free OIRD microarray chips. Anal Bioanal Chem 416, 3775–3783 (2024). https://doi.org/10.1007/s00216-024-05318-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05318-5

Keywords

Navigation