Log in

Structural and spectral properties of tartrato complexes of vanadium(V) from quantum chemical calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Structural and spectral properties of three complex anions of vanadium(V) with tartrato ligands were theoretically studied by all-electron DFT calculations employing various functionals, such as BP86, BLYP, B3LYP, BHHLYP, and the M06-family. Results were statistically evaluated, with the aim to find a reliable, fairly accurate, and yet computationally efficient combination of methods and basis sets to be used in computational chemistry of vanadium(V) complex anions at even larger scale. Subsequent vibrational analysis based upon BP86 and B3LYP data provided a fair agreement with the experimental vibrational spectra. Additionally, the absorption UV–Vis and the electronic circular dichroism spectra of studied compounds were simulated via time-dependent density functional theory calculations with the long-range corrected functionals (CAM-B3LYP, LC-ωPBE, and ωB97XD). Finally, the 51V NMR chemical shifts were calculated using the GIAO approach at the B3PW91 level. The solvent effect was simulated within the PCM model. Where available, the calculated spectral properties were compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blair GT, DeFraties JJ (2000) Hydroxy dicarboxylic acids, kirk othmer encyclopedia of chemical technology. Wiley, Hoboken, NJ

    Google Scholar 

  2. Williams ID, Pedersen SF, Sharpless KB, Lippard SJ (1984) J Am Chem Soc 106:6340

    Google Scholar 

  3. Bryliakov KP, Talsi EP (2008) Curr Org Chem 12:386

    Article  CAS  Google Scholar 

  4. Gan CS (2008) Can J Chem 86:261

    Article  CAS  Google Scholar 

  5. Molnár P, Thorey P, Bánsághi G, Székely E, Poppe L, Tomin A, Kemény EFS, Simándi B (2008) Tetrahedron Asymmetry 19:1587

    Article  Google Scholar 

  6. Nakamura H, Fujii M, Sunatsuki Y, Kojima M, Matsumoto N (2008) Eur J Inorg Chem 8:1258

    Article  Google Scholar 

  7. Tapscott ER, Belford RL, Paul IC (1969) Coord Chem Rev 4:323

    Article  CAS  Google Scholar 

  8. Nakazawa H, Yoneda H (1978) J Cromatogr 160:89

    Article  CAS  Google Scholar 

  9. Wijeratne AB, Spencer SE, Gracia J, Armstrong DW, Schug KA (2009) J Am Soc Mass Spectrom 20:2100

    Article  CAS  Google Scholar 

  10. Sakurai H, Katoh A, Yoshikawa Y (2006) Bull Chem Soc Jpn 79:1645

    Article  CAS  Google Scholar 

  11. Sakurai H, Kojima Y, Yoshikawa Y, Kawabe K, Yasui H (2002) Coord Chem Rev 226:187

    Article  CAS  Google Scholar 

  12. Sakurai H, Funakoshi S, Adachi Y (2005) Pure Appl Chem 77:1629

    Article  CAS  Google Scholar 

  13. Murakami S, Habane S, Higashimura H (2007) Polymer 48:6565

    Article  CAS  Google Scholar 

  14. Cortese AJ, Wilkins B, Smith MD, Yeon J, Morrison G, Tran TT, Halasyamani PS, zur Loye HC (2015) Inorg Chem 54:4011

    Article  CAS  Google Scholar 

  15. Antal P, Schwendt P, Tatiersky J, Gyepes R, Drábik M (2014) Trans Metal Chem 39:893

    Article  CAS  Google Scholar 

  16. Gáliková J, Schwendt P, Tatiersky J, Tracey AS, Žák Z (2009) Inorg Chem 48:8423

    Article  Google Scholar 

  17. Schwendt P, Tracey AS, Tatiersky J, Gáliková J, Žák Z (2007) Inorg Chem 46:3971

    Article  CAS  Google Scholar 

  18. Koch W, Holthausen MC (2002) A chemist’s guide to density functional theory. Viley-VCH, Weinheim

    Google Scholar 

  19. Krivosudský L, Schwendt P, Šimunek J, Gyepes R (2014) Chem Eur J 20:8872

    Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 Revision A.02. Gaussian Inc., Wallingford, CT

    Google Scholar 

  21. Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Design 14:123

    Article  CAS  Google Scholar 

  22. Schafer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  23. Schafer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  Google Scholar 

  24. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  25. Bauschlicher CW, Langhoff SR, Barnes LA (1989) J Chem Phys 91:2399

    Article  CAS  Google Scholar 

  26. Krishnan R, Binkley J, Seeger R, Pople J (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  27. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer P (1983) J Comput Chem 4:294

    Article  CAS  Google Scholar 

  28. Bühl M, Parrinello M (2001) Chem Eur J 7:4487

    Article  Google Scholar 

  29. Chrappová J, Schwendt P, Sivák M, Repiský M, Malkin VG, Marek J (2009) Dalton Trans 3:465

    Article  Google Scholar 

  30. Orešková G, Chrappová J, Puškelová J, Šimunek J, Schwendt P, Noga J, Gyepes R (2015) Struct Chem. doi:10.1007/s11224-015-0593-9

    Google Scholar 

  31. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  32. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  36. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  38. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  39. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  41. Jamróz MH (2013) Spectrochim Acta A 114:220

    Article  Google Scholar 

  42. Pascual-Ahuir JL, Silla E, Tun̂ón I (1994) J Comput Chem 15:1127

    Article  CAS  Google Scholar 

  43. Tomasi J, Mennucci B, Cancés E (1999) J Mol Struct 464:211

    Article  CAS  Google Scholar 

  44. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  45. Casida ME (1995) In: Chong DP (ed) Time-dependent density-functional response theory for molecules. World Scientific, Singapore

    Chapter  Google Scholar 

  46. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109

    Article  Google Scholar 

  47. Vydrov OA, Heyd J, Krukau A, Scuseria GE (2006) J Chem Phys 125:074106

    Article  Google Scholar 

  48. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  49. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:5157

    Article  Google Scholar 

  50. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839

    Article  Google Scholar 

  51. Ditchfield R (1972) J Chem Phys 56:5688

    Article  CAS  Google Scholar 

  52. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  53. Perdew JP (1991) Phys B 172:1

    Article  CAS  Google Scholar 

  54. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  55. Kutzelnigg W, Fleischer U, Schindler M (1991) In: Diehl P, Fluck E, Günther H, Kosfeld R, Seelig J (eds) NMR basic principles and progress. Springer, Berlin/Heidelberg

    Google Scholar 

  56. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  57. Neugebauer J, Reiher M, Kind C, Hess BA (2002) J Comput Chem 23:895

    Article  CAS  Google Scholar 

  58. Neugebauer J, Hess BA (2003) J Chem Phys 118:7215

    Article  CAS  Google Scholar 

  59. Le Guennic B, Maury O, Jacquemin D (2012) Phys Chem Chem Phys 14:157

    Article  Google Scholar 

  60. Cammi R, Corni S, Menuci B, Tomasi J (2005) J Chem Phys 122:104513

    Article  CAS  Google Scholar 

  61. Caricato M, Menuci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) J Chem Phys 124:124520

    Article  Google Scholar 

  62. Improta R, Barone V, Scalmani G, Frisch MJ (2006) J Chem Phys 125:054103

    Article  Google Scholar 

  63. Improta R, Scalmani G, Frisch MJ, Barone V (2007) J Chem Phys 127:074504

    Article  Google Scholar 

  64. Surján PR (1980) Theor Chim Acta 55:103

    Article  Google Scholar 

Download references

Acknowledgments

We thank Peter Schwendt for prompting this work. JN appreciates a long-term friendship with Péter Surján whom we dedicate this work on the occasion of his 60th birthday, and who started his scientific carrier by calculating the rotatory strengths [64]. This work has been supported by the Grant Agency of the Ministry of Education of the Slovak Republic and Slovak Academy of Sciences VEGA project no. 1/0336/13 as well as by the Slovak Research and Development Agency (APVV-0510-12). Calculations were performed in the Computing Center of the Slovak Academy of Sciences using the supercomputing infrastructure acquired in project ITMS 26230120002 and 26210120002 supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Noga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 71 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orešková, G., Krivosudský, L., Šimunek, J. et al. Structural and spectral properties of tartrato complexes of vanadium(V) from quantum chemical calculations. Theor Chem Acc 134, 116 (2015). https://doi.org/10.1007/s00214-015-1719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1719-2

Keywords

Navigation